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Abstract
In the present study, the correlation between bacterial abundance and soil physicochemical properties 
along the heavy metal contamination gradient in the area of non-ferrous metal processing plant was as-
sessed. Our results showed that bacterial abundance (number of heterotrophic bacteria and number of 
16S rRNA gene copies) decreased with 45–56% (CFU) and 54–87% (16S rRNA gene) along the Zn, Pb 
and Cd contamination gradient. The total bacterial abundance (16S rRNA gene) increased exponentially 
in contrast to the abundance of heterotrophic bacteria. The reduction of bacterial abundance in heavily 
contaminated soil indicated that the soil properties (soil pH, total organic carbon, inorganic ions, soil 
texture) could modify the effects of heavy metals and the response of microorganisms to that stress in 
long-term contaminated soils.
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Introduction

Soil sustains a great abundance and diversity of microorganisms, which modify its 
physical and chemical environment and play an essential role in the mineralization of 
organic matter and nutrient recycling (Martinez-Toledo et al. 2021). Microbial com-
munities are strongly susceptible to soil physicochemical properties and to the effect of 
various soil pollutants, such as heavy metals (HMs). HMs are one of the most common 
pollutants, which accumulate in soils of industrial and mining areas. The most com-
mon HMs found in contaminated sites are Zn, Cd and particularly Pb (Wuana and 
Okieimen 2011; Fajardo et al. 2019). Long-term contamination with HMs is a threat 
to human health and ecosystems due to their non-biodegradability, bioaccumulation, 
environmental stability, persistence and biotoxicity characteristics (Ali et al. 2021).

Previous studies showed that HMs severely affect soil microbial communities by 
reducing their diversity (Chodak et al. 2013; Zampieri et al. 2016), richness (Cui et 
al. 2018), microbial biomass, metabolic activity (Chen et al. 2014; Hong et al. 2015; 
Zampieri et al. 2016; Fajardo et al. 2019) and by altering their structure (Cui et al. 
2018; Feng et al. 2018; Zhang et al. 2018). Recently, many studies were focused on the 
ecological effects of HMs on microbial community structure and diversity using next-
generation DNA sequencing technologies (NGS) (Gołębiewski et al. 2014; Fajardo 
et al. 2019; Jiang et al. 2019; Xiao et al. 2019; Zhao et al. 2019; Huang et al. 2021). 
Gołębiewski et al. (2014) found that the diversity and abundance of soil microorgan-
isms near a Pb-Zn mining area have been reduced and that Zn was the largest selective 
factor. Zhao et al. (2019) reported that HMs (Cu, Zn, Pb) affected the abundance and 
structural diversity of microbial communities in the mining area. Fajardo et al. (2019) 
showed significant phylogenetic and functional shifts in the bacterial community dur-
ing the soil exposure to Pb, Cd, and Zn. Xiao et al. (2019) revealed that the bacterial 
community structure was mainly altered by soil organic matter, HMs (Cr) and pH. 
According to Huang et al. (2021), pH and HMs (Cr, Cu, Ni, and Zn) were among the 
most powerful factors, which change the community structure in HM contaminated 
soil under remediation.

Many studies reported that soil physicochemical properties (soil pH, soil texture, 
organic matter, etc.) moderate HMs’ toxicity and therefore, HMs play a key role in 
shaping the community diversity and structure (Wang et al. 2022).

Taking into consideration that soil is highly heterogeneous, it is necessary to in-
vestigate the microbial communities at different sites and scales (Wang et al. 2022). 
In this term, the aim of this study was to assess the correlation between soil bacterial 
abundance and soil physicochemical properties, including HM content along the Zn, 
Pb and Cd contamination gradient in the area of non-ferrous processing plant KCM-
2000. KCM-2000 is the largest lead-zinc smelter in the country, located in the vicinity 
of Plovdiv city, Southern Bulgaria. We hypothesized that long-term HM contamina-
tion reduced the abundance and changed the composition of indigenous soil bacterial 
communities, and these effects might be modulated by the local soil properties.
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Materials and methods

Study area and soil sampling.

The study area is located in the region of a non-ferrous metal plant KCM 2000- Plov-
div, Southern Bulgaria (42°03'40.8"N, 24°48'52.0"E) (Fig. 1). Topsoil samples (0–
20 cm) were collected in June 2020 along a gradient of contamination with Zn, Pb and 
Cd. Five points have been selected from a monitoring map, considering the direction 
of spread of the diffuse pollution as follows: KCM_1, named ”Green belt of decorative 
trees”, (42°03'31.68"N, 24°49'19.2"E), located at a distance of 0.5 km – south of the 
smelter; KCM_2 (42°03'5.76"N, 24°49'19.6"E) – 2 km south of the smelter; KCM_3 
(42°02'6"N, 24°49'19.2"E) located close to the village of Dolni Voden – 3 km south 
of the smelter; KCM_4 (42°03'31.68"N, 24°49'45.12"E) – 1 km south-east of the 
smelter; and KCM_5 (42°04'23.52"N, 24°49'45.12"E) – 1 km east of the smelter. 
Five subsamples per site were pooled and used for further analyses. At all sites, the soil 
was classified as alluvial, being crop managed, except at KCM_1, where it was classified 
as technogenic.

Soil physicochemical properties and heavy metal content.

Soil pH was measured in 0.1M CaCl2 according to ISO 10390:2005. Soil tex-
ture was determined by the Kachinsky method (1958). The total organic carbon 
(TOC) was determined according to Chen et al. (2014). Soil nitrate (NO3-N) 
and ammonium (NH4-N) nitrogen and inorganic phosphates (P2O5) were deter-

Figure 1. Map of the study area in Southern Bulgaria and sampling sites.
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mined according to the methods of Keeney and Nelson (1982), and Olsen (1982), 
respectively. Soil moisture (SM) was calculated after oven drying (105 °C). The 
concentration of heavy metals was measured by ELAN 5000 Inductively Coupled 
Plasma Mass Spectrometer (Perkin-Elmer, Shelton, CT, USA) according to ISO 
11047:1998 after soil decomposition by aqua regia (total HMs) and soil extraction 
with 0.01M CaCl2 (bioavailable forms of HMs). Nemerow’s pollution index (NPI) 
was calculated to evaluate the overall pollution of heavy metals in the soil samples 
(Zhao et al. 2019).

Enumeration of heterotrophic bacteria.

The bacterial abundance was estimated by the use of colony-forming units (CFUs) in 
serial dilution in R2A medium at 25 °C for 2 days. The selected dilution from each 
test sample was 10-4 and it was plated in triplicate. For this analysis, we used 10–100 
colonies per plate.

DNA extraction.

The genomic DNA was extracted from 0.5 g soil using the E.Z.N.A DNA soil kit 
(Omega Bio-tek, USA) using the manufacturer’s recommended protocol. The soil 
DNA quality was controlled by a spectrophotometer (NanoDrop 1000, ThermoScien-
tific, USA) and agarose gel electrophoresis.

Quantitative PCR (qPCR) of the 16S rRNA gene

Bacterial abundance was quantified by real-time quantitative PCR (qPCR) with bac-
terial universal primer pairs Eub338f (5’-ATTACCGCGGCTGCTGG-3’)/Eub518r 
(5’-ATTACCGCGGCTGCTGG-3’) for 16S rRNA gene (Fierer et al. 2005). The 
qPCR reactions were set up using iTaqTM Universal SYBRGreen Supermix (BioRad) 
as described in Aleksova et al. (2020) and PCR efficiency was 90% (R2 =0.9879).

Statistical analyses

Soil properties and HM concentrations were compared using principal component 
analysis (PCA). Prior to the analysis the data was normalized and checked for outliers. 
Linear correlations between the resulting indicator of pollution and the copies of 16S 
rRNA gene found in each sample were plotted and evaluated (r2 metric of plotted 
trendline). Additionally, the significance of the correlation between the two variables 
was evaluated with the Student T-test.

The PCA statistical analyses were carried out using Primer 7.0. Univariable statisti-
cal correlations were tested using STATGRAPHICS Centrion XVII software package. 
(Karamfilov et al. 2019).
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Results

Environmental variables

The values of studied soil properties are shown in Table 1. The soils were deter-
mined as sandy loam textured. The soil pH was neutral (pH 6.7 to 7.2) and the total 
organic matter content (TOC) ranged from 6.45 g kg-1 to 14.07 g kg-1. Soils were 
abundant with inorganic nitrate (especially KCM_1 and KCM_2) and inorganic 
phosphates. Probably, the high NO3-N concentration in KCM_1 and KCM_2 was 
due to soil fertilization.

The HM concentrations at KCM_3 were under (Zn) and slightly higher (Pb and 
Cd) than the maximum permissible concentration (MPC) allowed under Bulgarian 
Regulation 3/2008 (http://eea.governement.bg/bg/legislation/soil), and this sample 
was considered as a control in our study. Pb was the most serious soil pollutant, and its 
concentration was over 100 (KCM_1), 57 (KCM_4), 13.7 (KCM_2) and 3 (KCM_5) 
times higher than the guideline limit. Cd was the other most serious soil pollutant and 
its concentrations exceeded the MPC in the following order: KCM_1 (92.45 times) 
>KCM_4 (43 times) >KCM_2 (7.85 times) >KCM_5 (4.0 times). The order of Zn soil 
contamination comparing to MPC was: KCM_1 (29.5 times) >KCM_4 (21.0 times) 
>KCM_2 (4.8 times) >KCM_5 (2.0 times). Nemerow’s Pollution index (NPI) assessed 
the overall level of soil contamination (Zhao et al. 2019), and the soils were classified 
as heavily contaminated (NPI>3), except KCM_3, which had precautionary values of 
contamination (Table 1).

Table 1. Soil physicochemical properties and concentrations of heavy metals (total and bioavailable 
forms) in the area of KMC-2000.

Soil parameter Soils
KCM_1 KCM_2 KCM_3 KCM_4 KCM_5

pH 7 7.1 7.2 6.7 6.8
Sand (%) 17.6 53.6 47.1 49.0 51.7
Silt (%) 39.2 30.9 31 30.8 36.2
Clay (%) 43.3 15.5 21.9 20.2 12.1
Soil moisture (SM) (%) 16.7 12.3 9.3 14.7 22.7
TOC (g kg-1) 9.65 14.07 6.45 12.33 7.035
NO3-N (mg g-1) 43.38 16.32 3.01 5.13 †ND
NH4-N (mg g-1) 6.62 5.13 3.26 2.25 2.22
P2O5 (mg kg-1) 5.69 24.02 7.42 6.89 †ND
Zn (mg kg-1) 9452 1558.2 216.2 6872 740
Pb (mg kg-1) 11569 1370.1 135.6 5723 335
Cd (mg kg-1) 184.9 15.7 3.9 86.2 9.3
Znb‡ (mg kg-1) 8.2 0.1 0.1 3.3 0.3
Pbb‡ (mg kg-1) 2.6 0.2 0.9 0.2 0.8
Cdb‡ (mg kg-1) 9 0.2 0.5 1.1 0.4
NPI§ 73.27 8.74 1.00 37.46 3.11

†ND – No data; ‡b – Bioavailable forms of the heavy metals; §NPI – Nemerow Pollution Index.

http://eea.governement.bg/bg/legislation/soil
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Soil bacterial abundance

The results from the bacterial abundance of heavily contaminated soils were compared 
as a percent to KCM_3, which was a control soil in the experiment (Fig. 2). The 
highest number of cultivable heterotrophic bacteria (CFU) and 16S rRNA gene cop-
ies were reported for KCM_2. This was the only site, where bacterial abundance was 
around 27% (CFU) and 55% (16S rRNA) higher than that of the control (KCM_3). 
The lowest bacterial abundance was detected in the most contaminated site KCM_1, 
where it decreased by 56% (CFU) and 87% (16S rRNA gene copies) compared to the 
control soil. The soil bacterial abundance in KCM_4 and KCM_5 decreased by 47% 
(CFU) and 64% (16S rRNA) for KCM_4, and by 45% (CFU) and 17% (16S rRNA) 
for KCM_5 compared to KCM_3.

Correlation between soil properties and heavy metals.

Soil properties (total organic content, inorganic ions, soil particles of silt, clay and 
sand) and HM concentrations in soils were compared using principal components 
analysis (PCA) and the results are presented in Fig. 3. PC1 explained 65.7% of the 
total soil variation and showed a significant negative correlation with HM concentra-
tions (total and bioavailable forms), concentrations of nitrate, nitrogen, soil pH and 
silt particles (Table 2). PC2 explained 17.7% of the total soil variation and positively 
correlated with sand particles and negatively with TOC and phosphates. PCA ordi-
nation showed a clear gradient of contamination level and differences in soil char-

Figure 2. Soil bacterial abundance (% of KCM_3) of cultivable heterotrophic bacteria (CFU) and 16S 
rRNA gene copies.
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Table 2. PCA axes scores of measured soil variables.

Variable PC1 PC2 PC3 PC4
Variation explained (%) 65.7 17.7 13.4 3.2

pH -0.001 -0.308 -0.618 -0.327
TOC -0.011 -0.501 0.437 0.205
Sand 0.324 -0.047 0.119 0.110
Silt -0.248 0.266 -0.137 0.708
Clay -0.316 -0.027 -0.102 -0.358
Zn -0.284 -0.019 0.357 -0.211
Pb -0.313 -0.028 0.219 0.127
Cd -0.316 0.000 0.197 -0.117
Znb -0.321 0.032 0.156 -0.119
Pbb -0.296 0.142 -0.276 0.067
Cdb -0.328 0.019 -0.057 0.037
NO3-N -0.305 -0.216 -0.080 0.199
NH4-N -0.244 -0.357 -0.240 0.251
P2O5 0.068 -0.620 -0.022 0.116

Figure 3. Principal component analysis of soil properties and heavy metals in the area of KCM-2000. 
Principal components axis 1 (PC1) explains 65.7% of the total soil variation and PC2 – 17.5%.

acteristics between different sampling sites (Fig. 3, Tables 2, 3). Thus, the resulting 
PC1 score for each sampling site can be regarded as an integral index of heavy metals 
pollution throughout the study area. Based on this evaluation, the soils of KCM_3 
(PC1=1.6) and KCM_2 (PC1=1.57) were qualified as the least impacted by HMs, fol-
lowed by KCM_5 (PC1=1.7), and the highly impacted soils of KCM_4 (PC1=0.486) 
and KCM_1 (PC1=-5.35) (Table 3).
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Table 3. PC1 score and 16s rRNA gene copies.

Sample PC1 score 16S rRNA gene copies ×1010

KCM_1 -5.35 1.49
KCM_2 1.57 17.80
KCM_3 1.6 11.50
KCM_4 0.486 4.17
KCM_5 1.7 9.57

Figure 4. Exponential correlation between integrated HM contamination status (PC1 score) and bacte-
rial abundance (16S rRNA gene copies) in the studied soils (R2=0.8251) from the area of KCM – 2000.

Correlation between bacterial abundance and soil properties.

The soils had a high abundance of bacteria, whose number varied from 17.80×1010 
(KCM_2) to 1.49×1010 (KCM_1) 16S rRNA gene copies (Table 3). To evaluate the im-
pact of HM contamination on soil bacterial abundance, estimated as 16S rRNA gene cop-
ies, an exponential correlation was performed. The good exponential correlation between 
the values of PC1 pollution score, obtained by the PCA (Table 3), and 16S rRNA gene 
copies (R2=0.8251) was demonstrated in Fig. 4. The results indicated both a dramatic 
decrease of soil bacterial abundance at KCM_1 and its exponential increase in soils along 
the gradient of contamination with Zn, Pb and Cd. The same analysis was conducted with 
the abundance of soil heterotrophic bacteria. The influence of increasing heavy metal con-
tamination on microbial abundance was also confirmed by the significant correlation be-
tween the 16S rRNA gene copies and the PC1 pollution score (Student T-test, p=0.017).

Discussion

The present study focused on the correlation between bacterial abundance and soil 
properties in long-term contaminated soils in the area of non-ferrous metal processing 
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plant KCM-2000. The gradient of Zn, Pb, and Cd concentrations in the soil from 
KCM_3 to KCM_1 provided a good soil pattern for estimating the changes that oc-
curred in soil bacterial abundance under the power of long-term HM contamination. 
The soil of KCM_3 was determined in this study as a control (NPI=1.00). In KCM_3, 
the concentration of Pb was slightly higher than the MPC, and Pb bioavailable forms 
were equal to that of KCM_5, exceeded by 2.5 times that of KCM_2 and KCM_4, 
and was by 3.0 times lower than Pbb of KCM_1.

The distribution of bacterial abundance of unculturable and cultivable bacteria 
along a gradient of contamination was estimated through quantitative PCR of 16S 
rRNA gene and numbers of colony-forming units (CFU). In general, the soils of the 
site of interest showed a high bacterial abundance – 1.49×1010-17.80×1010 16S rRNA 
gene copies (total bacterial abundance) and 1.30×106 -3.70×106 CFU (abundance of 
heterotrophic bacteria).

Although, the HM gradient of soil contamination determined a gradient of soil bac-
terial distribution, only in the case of KCM_2 bacterial abundance was higher (around 
55% for 16S rRNA and 27% for CFU) compared to that of the control. We suggested 
that this inconsistency with the model of general bacterial distribution could be due 
to the toxicity of the much higher Pbb concentrations in KCM_3, or attributed to the 
modulating effects of higher concentrations of TOC, NO3-N and P2O5 in KCM_2 
compared to KCM_3 soil. Bacterial reduction in HM contaminated soils varied be-
tween 45–56% (CFU) and 54–87% (16S rRNA), except for the relatively low decrease 
in 16S rRNA gene copies in KCM_5 (17% compared to KCM_3). This fact could be 
explained by the relatively low level of soil contamination compared to the other studied 
sites (NPI=3.11). The obtained results were consistent with our previous study, where 
bacterial abundance (CFU and 16S rRNA gene copies) decreased in long-term contam-
inated with Cu, Zn and Pb soils in the area of copper mine and smelter (Aleksova et al. 
2020; Palov et al. 2020). Similar findings for the decrease of CFU (Pacwa-Płociniczak 
et al. 2018) and 16S rRNA gene copies (Yin et al. 2015) under a long-term HM pollu-
tion in soils were observed by other authors. Fajardo et al. (2019) explained the decrease 
in bacterial abundance under HMs by a decrease in the metabolic activity of Bacteria 
in microbial soil communities. Other authors showed the opposite trend, which mani-
fested that HMs (Cu, Zn, Pb and Cd) affected slightly the abundance, but strongly the 
diversity of bacterial communities (Tipayno et al. 2018; Huang et al. 2021).

To elucidate the effects of HMs and soil properties on the distribution of bacteria, 
an exponential correlation between the values of PC1 scores, and both 16S rRNA gene 
copies and CFU was conducted. There was found to be a good correlation between soil 
variables and 16S rRNA gene copies, but a low relationship between soil characteristics 
and CFU. We assumed that the lack of significant correlation between soil variables 
and heterotrophic bacteria (CFU) might have resulted from the limitation of cultiva-
tion technique or the high ecological tolerance of cultivable representatives of bacterial 
communities. Some authors (De Leij et al. 1994) suggested that cultivable bacteria 
could be classified as r-strategic opportunists, which grow fast, tolerate environmental 
fluctuations and are highly resistant to outside impacts.
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Conclusions

The total bacterial abundance (estimated by the quantified 16S rRNA genes) increased 
exponentially in contrast to the abundance of heterotrophic bacteria, which could be 
explained by the limitations of the cultivable method. Regarding the statistical analysis, 
the bacterial abundance, expressed by the 16S rRNA gene copies, was considered as 
a more valuable indicator of the HM contamination effects on the soil inhabitants in 
comparison to the heterotrophic bacterial abundance. The reduction of bacterial abun-
dance in heavily contaminated soil indicated that the soil properties (soil pH, total or-
ganic carbon, inorganic ions, soil texture) could modify the effects of heavy metals and 
the response of microorganisms to that stress in long-term contaminated soils. Further 
studies are needed for investigating the shifts in bacterial community structure in this 
area in response to the HM contamination gradient.
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