BioRisk 5: 85-107, doi: 10.3897/biorisk.5.844
Climate and elevational range of a South African dragonfly assemblage
Michael Samways, Augustine Niba
Abstract Elevation and climate are interrelated variables which have a profound affect on biota. Flying insects such as dragonflies can rapidly disperse and optimal habitat conditions at appropriate elevations. Such behaviour is likely to be especially important in geographical areas which are subject to major climatic events such as El Niño. Accordingly, we studied dragonflies and environmental variables in a series of reservoirs over an elevational range of 100–1350 m a.s.l. at the same latitude on the eastern seaboard of South Africa. The aim was to determine how elevation and climate (as regional processes), as well as local factors, influence species assemblage variability, habitat preference and phenology. Certain environmental variables strongly explained the main variation in species assemblage. These included local factors such as pH, marginal grasses, percentage shade, exposed rock, marginal forest and to a lesser extent, marshes and flow. Different species showed various tolerance levels to these variables. Elevation and climate as regional processes had very little influence on dragonfly assemblages in comparison with these environmental factors. These odonate species are essentially sub-tropical, and are similar to their tropical counterparts in that they have long flight periods with overlapping generations. Yet they also have temperate characteristics such as over-wintering mostly as larvae. These results indicate evolutionary adaptations from both temperate and tropical regions. Furthermore, most were also widespread and opportunistic habitat generalists. The national endemics Pseudagrion citricola and Africallagma sapphirinum only occurred at high elevations. However, the endemic Agriocnemis falcifera was throughout all elevations, suggesting regional endemism does not necessarily equate to elevational intolerance. Overall, the results suggest that many millennia of great climatic variation have led to a highly vagile and elevation-tolerant dragonfly assemblage which readily occupies new water bodies. Such an assemblage is likely to be highly tolerant of global climate change, so long as there is sufficient water to keep the reservoirs at a constant level.