Research Article |
Corresponding author: Wojciech Ciesielski ( w.ciesielski@interia.pl ) Academic editor: Josef Settele
© 2023 Wojciech Ciesielski, Henryk Kołoczek, Zdzisław Oszczęda, Jacek A. Soroka, Piotr Tomasik.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Ciesielski W, Kołoczek H, Oszczeda Z, Soroka JA, Tomasik P (2023) Potential risk resulting from the influence of static magnetic field upon living organisms. Numerically simulated effects of the static magnetic field upon fatty acids and their glycerides. BioRisk 19: 1-24. https://doi.org/10.3897/biorisk.19.96250
|
Background: We attempt to recognise the effects of static magnetic field (SMF) of varying flux density on flora and fauna. For this purpose, the influence of static magnetic field is studied for molecules of octadecanoic (stearic), cis-octadec-9-enoic (oleic), cis,cis-octadec-9,12-dienoic (linoleic), all cis-octadec-6,9.12-trienoic (linolenic), trans-octadec-9-enoic – (elaidic), cis-octadec-11-enoic (vaccenic) and all trans-octadec-6,9,12-trienoic (trans-linolenic) acids as well as 1- and 2-caproyl monoglycerides, 1,2- and 1,3-caproyl diglycerides and 1,2,3-caproyl triglyceride. In such a manner we attempt to develop an understanding of the interactions of living cells with SMF on a molecular level.
Methods: Computations of the effect of real SMF 0.0, 0.1, 1, 10 and 100 AMFU (Arbitrary Magnetic Field Unit; here 1AMFU > 1000 T) flux density were performed in silico (computer vacuum), involving advanced computational methods.
Results: SMF polarises molecules depending on applied flux density It neither ionises nor breaks valence bonds at 0.1 and 1 AMFU. In some molecules under consideration flux density of 10 and 100AMFU some C-H and C-C bonds were broken. Some irregularities were observed in the changes of positive and negative charge densities and bond lengths against increasing flux density. They provide evidence that molecules slightly change their initially fixed positions with respect to the force lines of the magnetic field. The length of some bonds and bond angles change with an increase in the applied flux density providing, in some cases, polar interactions between atoms through space.
Conclusions: SMF destabilizes lipid acids and caproyl glycerides irregularly against increasing flux density. That irregularity results from the ability of those molecules to twist out of the initially established SMF plain and squeeze molecules around some bonds. In some molecules SMF flux density of 10 AMFU and above breaks some valence bonds and only in case of elaidic acid the trans-cis conversion is observed. Depending on the structure and applied flux density SMF either stimulates or inhibits metabolic processes of the lipids under study.
di-acyl glycerides, elaidic acid, linoleic acid, linolenic acid, mono-acyl glycerides oleic acid, stearic acid, trans-linolenic acid, tri-acyl glycerides, vaccenic acid
Environmental pollution with magnetic fields (
This paper presents results of such computations for selected higher lipid acids belonging to the group of derived lipids and mono-, di- and tri-glycerides constituting a group of simple lipids (
Focus on lipids can be rationalized also for their role in the consumption, diet and functional properties of foodstuffs (see, for instance,
Computations of the effect of real SMF 0.0, 0.1, 1, 10 and 100 AMFU (Arbitrary Magnetic Field Unit; here 1AMFU > 1000 T) flux density were performed in silico (computer vacuum), involving advanced computational methods.
Molecular structures were drawn using the Fujitsu SCIGRESS 2.0 software (
Numbering atoms in the molecules of lipid fatty acid and caproyl glycerides without following the geometry.
In the consecutive steps, the influence of the static magnetic field (SMF) upon optimised molecules was computed with Amsterdam Modelling Suite software (
Numbering atoms in particular molecules under consideration are presented in Fig.
Presentation of effect of SMF of flux density from 0 to 100 AMFU upon heat of formation and dipole moment of selected lipid acids (Table
Effect of SMF of increasing flux density upon heat of formation and dipole moment of lipid acids.
Lipid acids | Heat of formation [kJ·mol-1] at SMF flux density [AMFU] | Dipole moment [D] at SMF flux density [AMFU] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.1 | 1.0 | 10 | 100a | 0 | 0.1 | 1.0 | 10 | 100a | |
Stearic | -560 | -531 | -511 | -492 | -416(25.7) | 3.42 | 3.56 | 3.84 | 4.16 | 5.32(35.7) |
Oleic | -676 | -654 | -621 | -594 | -542(19.8) | 1.88 | 1.92 | 2.06 | 2.63 | 3.01(34.2) |
Linoleic | -565 | -510 | -457 | -401 | -326(42.3) | 2.39 | 2.45 | 2.63 | 2.95 | 3.06(21.3) |
Linolenic | -485 | -423 | -404 | -364 | -318(34.5) | 1.76 | 1.86 | 2.18 | 2.63 | 3.28(43.3) |
Elaidic | -642 | -612 | -586 | -527 | -461(28.2) | 4.51 | 4.68 | 4.77 | 5.16 | 6.24(27.7) |
Vaccenic | -672 | -653 | -591 | -521 | -423(27.0) | 1.88 | 1.96 | 2.23 | 2.84 | 3.67(48.7) |
trans-Linolenic | -421 | -401 | -372 | -341 | -216(48.7) | 1.66 | 1.74 | 1.96 | 2.65 | 3.15(47.3) |
Effect of SMF of increasing flux density upon heat of formation and dipole moment of caproyl glycerides.
Caproyl glyceride | Heat of formation [kJ·mol-1] at SMF flux density [AMFU] | Dipole moment [D] at SMF flux density [AMFU] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.1 | 1.0 | 10 | 100a | 0 | 0.1 | 1.0 | 10 | 100a | |
1-Caproyl | -192 | -182 | -168 | -136 | -110 (42.7) | 3.43 | 3.53 | 3.98 | 4.65 | 6.52 (90.0) |
2-Caproyl | -187 | -172 | -151 | -123 | -96 (48.7) | 1.41 | 1.45 | 1.76 | 3.12 | 4.96 (71.6) |
1,2-Dicaproyl | -263 | -252 | -237 | -196 | -118 (55.1) | 4.06 | 4.38 | 4.98 | 5.31 | 7.15 (42.1) |
1,3-Dicaproyl | -213 | -207 | -195 | -171 | -138 (35.3) | 1.42 | 1.52 | 1.95 | 2.69 | 3.99 (64.7) |
1,2,3-Tricaproyl | -384 | -363 | -335 | -239 | -156 (58.3) | 2.38 | 2.48 | 2.95 | 3.69 | 7.21 (67.0) |
SMF [AMFU] | Charge density [a.u.] on particular atoms at SMF flux density | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Octadecanoic (stearic) acid | |||||||||||||||||||||||||||
H58 | O55 | =C18 | =O19 | C17 | H53 | H54 | C16 | H52 | H51 | C11 | H42 | H41 | C10 | C2 | H24 | H23 | C1 | H20 | |||||||||
0 | .236 | -.292 | .287 | -.563 | -.151 | .122 | .122 | -.166 | .097 | .097 | |||||||||||||||||
0.1 | .241 | -.300 | .289 | -.564 | -.152 | .120 | .120 | -.153 | .095 | .095 | |||||||||||||||||
1 | .355 | -.385 | .259 | -.425 | -.143 | .140 | .135 | -.149 | .109 | .143 | |||||||||||||||||
10 | -257 | .094 | .095 | -.252 | -.151 | -.026 | -.071 | -.195 | .004 | ||||||||||||||||||
100 | -.272 | .124 | .118 | -.271 | -.109 | -.025 | -.050 | -.345 | .007 | ||||||||||||||||||
cis-Octadec-9-enoic (oleic) acid | |||||||||||||||||||||||||||
H54 | O20 | =C18 | =O19 | C17 | H52 | H53 | C16 | H50 | H51 | =C10 | H39 | =C9 | H38 | C8 | H37 | C5 | H31 | H30 | C4 | H29 | H28 | C1 | H22 | ||||
0 | .241 | -.336 | .325 | -.343 | -.168 | .116 | .089 | -.158 | .089 | .103 | -.164 | .117 | -.159 | .115 | |||||||||||||
0.1 | .269 | -.366 | .305 | -.340 | -.140 | .107 | .123 | -.156 | .093 | .104 | -.176 | .125 | -.155 | .116 | |||||||||||||
1 | .276 | -.377 | .297 | -.333 | -.131 | .104 | .128 | -.155 | .096 | .103 | -.179 | .130 | -.152 | .112 | |||||||||||||
10 | .325 | -.406 | .268 | -.357 | -.112 | .113 | .147 | -.144 | .109 | .116 | -178 | .150 | -.166 | .097 | |||||||||||||
100 | .057 | .000 | -.267 | .154 | .171 | -.132 | .122 | .113 | -.202 | -.096 | |||||||||||||||||
cis,cis-Octadec-9,12-dienoic (linoleic) acid | |||||||||||||||||||||||||||
H52 | O36 | =C28 | =O35 | C29 | H40 | H41 | C30 | H42 | H43 | =C26 | H37 | =C1 | H10 | =C3 | H13 | =C4 | H14 | ||||||||||
0 | .145 | -.193 | .926 | -.241 | -.872 | .077 | .083 | -.167 | .122 | .153 | -.213 | .132 | -.046 | .002 | -.128 | .084 | -.190 | .098 | |||||||||
0.1 | .188 | -.226 | .799 | -.291 | -.720 | .096 | .095 | -.183 | .121 | .150 | -.204 | .119 | -.035 | .018 | -.118 | .084 | -.191 | .097 | |||||||||
1 | .241 | -.276 | .544 | -.291 | -.498 | .136 | .124 | -.165 | .103 | .126 | -.214 | .081 | -.058 | .060 | -.129 | .083 | -.180 | .091 | |||||||||
10 | .257 | -.310 | .249 | -.337 | -.250 | .173 | .176 | -.240 | .128 | .149 | -.457 | .076 | -.047 | .232 | .092 | .108 | -.601 | .163 | |||||||||
100 | .260 | .-302 | .234 | -.303 | -.216 | .158 | .15 4 | -.193 | .124 | .145 | -.461 | .102 | .093 | .038 | -.109 | .107 | -233 | .103 | |||||||||
all cis-Octadec-6,9.12-trienoic (linolenic) acid | |||||||||||||||||||||||||||
H50 | O1 | =C20 | =O2 | C10 | H36 | H35 | C8 | H31 | H32 | =C13 | H41 | =C16 | H45 | =C19 | H49 | =C18 | H48 | =C14 | H42 | =C11 | H37 | =C12 | H39 | ||||
0 | .239 | -.313 | .311 | -.346 | -.164 | .116 | .113 | -.155 | .090 | .098 | -.169 | .122 | -.154 | .123 | -.160 | .117 | -.159 | .117 | -.160 | .121 | -.164 | .121 | -.205 | .078 | |||
0.1 | .301 | -.209 | .262 | -.504 | -.119 | .112 | .092 | -.149 | .093 | .110 | -.179 | .127 | -.154 | .122 | -.163 | .122 | -.182 | .125 | -.161 | .117 | -.163 | .122 | -.216 | .090 | |||
1 | .268 | -.289 | .285 | -.418 | -.132 | .117 | .101 | -.152 | .093 | .105 | -.175 | .119 | -.148 | .133 | -.157 | .124 | -.175 | .120 | -.166 | .122 | -.171 | .123 | -.225 | .102 | |||
10 | -.220 | -.110 | |||||||||||||||||||||||||
100 | -.143 | .094 | -214 | -.126 | |||||||||||||||||||||||
trans-Octadec-9-enoic – (elaidic) acid | |||||||||||||||||||||||||||
H54 | O1 | =C20 | =O2 | C18 | H49 | H50 | C14 | H44 | H43 | =C17 | H48 | =C15 | H47 | ||||||||||||||
0 | .236 | -.331 | .327 | -.277 | -.223 | .107 | .107 | -.151 | .098 | .099 | -.155 | .122 | -.163 | .121 | |||||||||||||
0.1 | .315 | -.372 | .282 | -.355 | -.176 | .118 | .115 | -.161 | .118 | .124 | -.189 | .143 | -.202 | .134 | |||||||||||||
1 | .336 | -.390 | .285 | -.356 | -.171 | .116 | .109 | -.167 | .113 | .124 | -.194 | .146 | -.197 | .137 | |||||||||||||
trans-Octadec-11-enoic (vaccenic) acid | |||||||||||||||||||||||||||
H54 | O1 | =C20 | =O2 | C16 | H46 | H47 | C9 | H33 | H34 | =C15 | H35 | =C17 | H45 | C13 | H41 | C12 | H39 | C10 | H35 | C18 | H32 | ||||||
0 | .242 | -.341 | .324 | -.340 | -.169 | .118 | .118 | -.156 | .095 | .095 | -.161 | .122 | -.157 | .121 | |||||||||||||
0.1 | .255 | -.356 | .325 | -.341 | -.157 | .120 | .120 | -.164 | .096 | .097 | -.164 | .124 | -.159 | .121 | |||||||||||||
1 | .268 | -.371 | .326 | -.341 | -.165 | .122 | .122 | -.169 | .098 | .096 | -.166 | .125 | -.171 | .121 | |||||||||||||
10 | .314 | -.409 | .325 | -.349 | -.150 | .123 | .124 | -.178 | .085 | .104 | -.168 | .127 | -.174 | .121 | |||||||||||||
100 | -.085 | .038 | -.120 | .085 | -.169 | .134 | -.118 | -.069 | |||||||||||||||||||
all trans-Octadec-6,9,12-trienoic (trans-linolenic) acid | |||||||||||||||||||||||||||
H50 | O1 | =C20 | =O2 | C10 | H35 | H36 | C8 | H31 | H32 | =C13 | H41 | =C16 | H45 | C15 | H44 | =C19 | H49 | =C18 | H48 | =C14 | H42 | =C11 | H37 | C12 | H39 | H40 | |
0 | .239 | -.315 | .311 | -.346 | -.165 | .115 | .113 | -.154 | .094 | .104 | -.165 | .120 | -.160 | .120 | -.150 | .117 | -.162 | .110 | -.166 | .117 | -.163 | .124 | |||||
0.1 | .204 | -.418 | .345 | -.252 | -.170 | .126 | .125 | -.174 | .093 | .103 | -.200 | .142 | -.210 | .142 | -.161 | .124 | -.187 | .118 | -.162 | .119 | -.162 | .121 | |||||
1 | .240 | -.357 | .313 | -.375 | -.155 | .134 | .133 | -.153 | .101 | .109 | -.191 | .154 | -.177 | .154 | -.139 | .137 | -.172 | .125 | -.157 | .118 | -.159 | .125 | |||||
10 | .247 | -.345 | .307 | -.413 | -.152 | .139 | .138 | -.150 | .106 | .112 | -.180 | .149 | -.166 | .149 | -.134 | .137 | -.167 | .123 | -.150 | .117 | -.158 | .126 | |||||
100 | -.103 | .083 | -.101 | .008 | .017 |
SMF [AMFU] | Atom – atom bond lengths [Å] at SMF flux density | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Octadecanoic (stearic) acid | ||||||||||||||||||||||||
H58 -O55 | O55- C18 | C18= 019 | C18- C17 | C17- C16 | C17- H53 | C17- H54 | C16- H52 | C16- H51 | C10- C11 | C2- H24 | C1- H20 | |||||||||||||
0 | 0..964 | 1.386 | 1.243 | 1.543 | 1.581 | 1.100 | 1.098 | 1.098 | ||||||||||||||||
0.1 | .0.968 | 1.360 | 1.220 | 1.520 | 1.540 | 1.090 | 1.090 | 1.090 | ||||||||||||||||
1 | .1.549 | 1.554 | 1.403 | 1.609 | 1.562 | 1.656 | 1.608 | 1.624 | ||||||||||||||||
10 | 2.344 | 2.665 | 2.761 | 2.886 | ||||||||||||||||||||
100 | 2.639 | 2.680 | 3.029 | 3.250 | ||||||||||||||||||||
cis-Octadec-9-enoic (oleic) acid | ||||||||||||||||||||||||
H54–O20 | O20-C18 | C18 = O19 | = C18-C17 | C17-H52 | C17-H53 | C17-C16 | C16-H51 | C16-H50 | C10 = C11 | C15-C14 | C15-H49 | C15-H48 | C10-H39 | = C10- = C9 | = C - 9H38 | C8-H36 | C8-H37 | C4-C5 | C5-H31 | C5-H30 | C4-H28 | C4-H29 | C1-H22 | |
0 | 1.987 | 1.360 | 1.202 | 1.494 | 1.113 | 1.112 | 1.532 | 1.111 | 1.107 | 1.337 | 1.092 | 1.337 | 1.093 | |||||||||||
0.1 | 1.143 | 1.369 | 1.198 | 1.545 | 1.131 | 1.052 | 1.519 | 1.129 | 1.106 | 1.331 | 1.202 | 1.331 | 1.372 | |||||||||||
1 | 1.202 | 1.375 | 1.189 | 1.575 | 1.143 | 1.042 | 1.513 | 1.134 | 1.108 | 1.325 | 1.252 | 1.325 | 1.509 | |||||||||||
10 | 1.529 | 1.396 | 1.229 | 1.702 | 1.526 | 1.389 | 1.593 | 1.494 | 1.383 | 1.395 | 1.733 | 1.395 | 1.567 | |||||||||||
100 | 2.352 | 2.359 | 2.428 | 2.857 | 2.635 | 2.681 | 2.771 | 2.303 | ||||||||||||||||
cis,cis-Octadec-9,12-dienoic (linoleic) acid | ||||||||||||||||||||||||
H52- O36 | O36- C28 | C28= O35 | C28- C29 | C29- H40 | C29- H41 | C29- C30 | C30- H42 | C30- H43 | C26= C1 | C26- H37 | C1- H10 | C2- C3 | C1- C2 | C2- H11 | C2- H12 | C3= C4 | C3- H13 | C4- H14 | ||||||
0 | 0.960 | 0.825 | 0.825 | 0.825 | 1.090 | 1.090 | 0.825 | 1.090 | 1.090 | 0.825 | 1.080 | 1.080 | 0.825 | 0.825 | 1.090 | 1.090 | 0.825 | 1.080 | 1.080 | |||||
0.1 | 0.949 | 0.882 | 0.887 | 0.851 | 1.078 | 1.065 | 0.869 | 1.050 | 1.071 | 0.864 | 1.051 | 1.047 | 0.866 | 0.872 | 1.085 | 1.078 | 0.858 | 1.037 | 1.035 | |||||
1 | 0.955 | 1.026 | 0.992 | 0.999 | 1.062 | 0.992 | 1.048 | 1.051 | 1.005 | 0.964 | 0.995 | 0.952 | 1.023 | 1.011 | 1.070 | 1.034 | 0.990 | 0.926 | 0.919 | |||||
10 | 1.105 | 1.411 | 1.351 | 1.416 | 1.069 | 1.066 | 1.511 | 1.053 | 1059 | 1.629 | 0.867 | 1.032 | 1.375 | 1.265 | 1.109 | 1.583 | 1.212 | 0.942 | 0.948 | |||||
100 | 1.095 | 1.368 | 1.368 | 1.395 | 1.083 | 1.004 | 1.463 | 1.008 | 1.056 | 0.905 | 0.728 | 0.740 | 1.278 | 1.394 | 1.103 | 1.067 | 1.255 | 0.843 | 0.858 | |||||
all cis-Octadec-6,9.12-trienoic (linolenic) acid | ||||||||||||||||||||||||
H50- O1 | O1- C20 | C20- O2 | C20- C10 | C10- H35 | C10- H36 | C10- C8 | C8- H31 | C8- H32 | C13- C6 | C13- H41 | C16- H45 | C13- C16 | C16- H45 | C19- H49 | C19- C18 | C18- H48 | C14- H42 | C14- C11 | C11- H37 | C1- H39 | ||||
0 | 0.981 | 1.358 | 1.222 | 1.508 | 1.097 | 1.035 | 1.528 | 1.096 | 1.097 | 1.341 | 1.087 | 1.087 | 1.341 | 1.087 | 1.089 | 1.343 | 1.098 | 1.087 | 1.341 | 1087 | 1.094 | |||
0.1 | 1.047 | 1.181 | 1..416 | 1.549 | 1.113 | 1.126 | 1.513 | 1.115 | 1.111 | 1.400 | 1.111 | 1.330 | 1.400 | 1.330 | 1.315 | 1.487 | 1.090 | 1.126 | 1.336 | 1.104 | 1.515 | |||
1 | 1.011 | 1.332 | 1.357 | 1.529 | 1.114 | 1.119 | 1.523 | 1.108 | 1.104 | 1.284 | 1.126 | 1.372 | 1.284 | 1.372 | 1.388 | 1.321 | 1.194 | 1.012 | 1.419 | 1.079 | 1.577 | |||
10 | 2.218 | |||||||||||||||||||||||
100 | 2.139 | 2.422 | ||||||||||||||||||||||
trans-Octadec-9-enoic – (elaidic) acid | ||||||||||||||||||||||||
H54- O1 | O1- C20 | C20- O2 | C20- C18 | C18- H49 | C18- H50 | C10- C14 | C14- H44 | C14- H43 | C17- O6 | C17- H48 | C17- H47 | |||||||||||||
0 | 0.977 | 1.369 | 1.197 | 1.581 | 1.110 | 1.113 | 1.533 | 1.109 | 1.109 | 1.335 | 1.088 | 1.088 | ||||||||||||
0.1 | 1.605 | 1.519 | 1.407 | 1.529 | 1.647 | 1.628 | 1.617 | 1.628 | 1.625 | 1.379 | 1.347 | 1.459 | ||||||||||||
1 | 1.732 | 1.529 | 1.402 | 1.522 | 1.0t9 | 1.657 | 1.618 | 1.624 | 1.599 | 1.358 | 1.327 | 1.423 | ||||||||||||
trans-Octadec-11-enoic (vaccenic) acid | ||||||||||||||||||||||||
H54- O1 | O1- C20 | C20= O2 | C20- C16 | C18- H49 | C16- H47 | C16 H46 | C15- H45 | C15= C17 | C12- H39 | C10- H35 | C9- C7 | C8-H32 | C7-H48 | C7- H30 | C7- H29 | |||||||||
0 | 0.987 | 1.362 | 1.202 | 1.493 | 1.113 | 1.112 | 1.088 | 1.335 | 1.331 | 1.088 | 1.108 | 1.106 | ||||||||||||
0.1 | 1.062 | 1.374 | 1.206 | 1.488 | 1.152 | 1.110 | 1.113 | 1.361 | 1.520 | 1.076 | 1.195 | 1.122 | ||||||||||||
1 | 1.128 | 1.385 | 1.210 | 1.483 | 1.183 | 1.187 | 1.130 | 1.383 | 1.509 | 1.068 | 1.130 | 1.267 | ||||||||||||
10 | 1.360 | 1.407 | 1.224 | 1.478 | 1.249 | 1.118 | 1.145 | 1.428 | 1.483 | 1.072 | 1.158 | 1.436 | ||||||||||||
100 | 2.487 | 2.005 | 2.256 | 2.132 | 2.132 | |||||||||||||||||||
all trans-Octadec-6,9,12-trienoic (trans-linolenic) acid | ||||||||||||||||||||||||
H50- O1 | O1- C20 | C20= O2 | C20- C10 | C10- H36 | C10- H35 | C10- C8 | C8- H31 | C8- H32 | C13= C16 | C13- H41 | C16- H45 | C17- H47 | C19- C18 | C19- H49 | C18- H48 | C14- H42 | C14= C11 | C11- H37 | C12- H39 | C12- H40 | ||||
0 | 0.981 | 1,358 | 1.222 | 1.508 | 1.096 | 1.096 | 1.528 | 1.097 | 1.097 | 1.341 | 1.087 | 1.087 | 1.501 | 1.099 | 1.089 | 1.088 | 1.341 | 1.057 | ||||||
0.1 | 0.984 | 1.512 | 1.229 | 1.490 | 1.104 | 1.104 | 1.523 | 1.105 | 1.115 | 1.789 | 1.068 | 1.064 | 1.260 | 1.099 | 1.058 | 1.100 | 1.376 | 1.097 | ||||||
1 | 0.970 | 1.477 | 1.345 | 1.405 | 1.104 | 1.104 | 1.526 | 1.117 | 1.108 | 1.632 | 1.037 | 1.064 | 1.494 | 1.051 | 1.102 | 1.102 | 1.337 | 1.097 | ||||||
10 | 0.939 | 1.481 | 1.441 | 1.382 | 1.110 | 1.109 | 1.519 | 1.110 | 1.119 | 1.577 | 1.121 | 1.132 | 1.417 | 1.112 | 1.106 | 1.105 | 1.353 | 1.100 | ||||||
100 | 2.270 | 2.088 | 2.270 |
Charge density on selected atoms of mono-, di- and tricaproyl glycerides.
SMF [AMFU] | Charge density [a.u.] on particular atoms at SMF flux density | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1-Caproyl glyceride | ||||||||||||||||||||||||||
C18 | H29 | H30 | C19 | O20 | O4 | C3 | H11 | H10 | C2 | H9 | O5 | H12 | C1 | H7 | H8 | O6 | H13 | |||||||||
0 | -.152 | .121 | .121 | .291 | -.354 | -.248 | -.064 | .107 | .098 | .040 | .092 | -.319 | .212 | .000 | .075 | .066 | -.323 | .204 | ||||||||
0.1 | -.157 | .136 | .135 | .200 | -.424 | -.213 | -.071 | .113 | .184 | .045 | .092 | -.312 | .214 | -.005 | .077 | 0.56 | -.316 | .205 | ||||||||
1 | -.258 | .167 | .170 | .337 | -.431 | -.233 | -.057 | .088 | .084 | 046 | .087 | -.323 | .215 | -.006 | .077 | .065 | -.316 | 205 | ||||||||
10 | -.223 | .158 | .189 | .327 | -.434 | -.252 | -.031 | .080 | .089 | .065 | .075 | -.383 | .245 | .023 | .068 | .064 | -.387 | .244 | ||||||||
100 | -.135 | .145 | .101 | .280 | -.390 | -.287 | -.013 | .070 | .078 | .034 | .063 | -.365 | .272 | .003 | .077 | .072 | -.392 | .262 | ||||||||
2-Caproyl glyceride | ||||||||||||||||||||||||||
C18 | H29 | H30 | C19 | O20 | O4 | C2 | H8 | C3 | H9 | H10 | O12 | H13 | C1 | H6 | H7 | O5 | H11 | |||||||||
0 | -.155 | .120 | .118 | .301 | -.379 | -.226 | .047 | .119 | -.041 | .041 | .091 | -.350 | .277 | -.008 | .058 | .080 | -.319 | .211 | ||||||||
0.1 | -.147 | .132 | .131 | .290 | -.443 | -.215 | .056 | .131 | .007 | .083 | .053 | -.328 | .382 | -.004 | .048 | .070 | -.312 | .223 | ||||||||
1 | -.166 | .114 | .110 | .312 | -.347 | -.242 | .055 | .111 | -.082 | .124 | .042 | -.379 | .273 | -.006 | .051 | .091 | -.315 | .210 | ||||||||
10 | -,143 | .139 | .135 | .279 | -.482 | -185 | 051 | .131 | -.047 | .113 | -.012 | -.362 | .309 | -.014 | 060 | .086 | -.314 | .212 | ||||||||
100 | -.179 | .126 | .110 | .331 | -.378 | -.251 | .012 | .121 | -.014 | .158 | .038 | -.380 | .209 | -.003 | .052 | .097 | -.320 | ..214 | ||||||||
1,2-Dicaproyl glyceride | ||||||||||||||||||||||||||
C5 | H16 | H17 | C6 | O7 | O19 | C40 | H45 | C39 | H43 | H44 | O42 | H48 | C41 | H46 | H47 | O38 | C25 | O26 | C24 | H35 | H36 | |||||
0 | -.152 | .121 | .128 | .289 | -.351 | -.216 | .029 | .124 | -.006 | .085 | .070 | -.332 | .205 | -.071 | .150 | .094 | -.243 | .290 | -.353 | -.152 | .118 | .121 | ||||
0.1 | -.171 | .128 | .128 | .127 | -.374 | -.236 | .044 | .124 | -.007 | .049 | .071 | -.354 | .253 | -.065 | .038 | .139 | -.297 | .306 | -.318 | -.157 | .123 | .128 | ||||
1 | -.168 | .129 | .129 | .130 | -.394 | -.239 | .048 | .118 | -.003 | .033 | .034 | -.370 | .336 | -.053 | .0103 | .161 | -.254 | .288 | -.401 | -.157 | .129. | .132 | ||||
10 | -.182 | .115 | .115 | .121 | -.330 | -.291 | .060 | .107 | -.013 | .033 | .058 | -.386 | .326 | -.067 | 0.92 | .129 | -.278 | .309 | -.337 | -.176 | .124 | .119 | ||||
100 | -.165 | .132 | .132 | .125 | -.387 | -.245 | .111 | .056 | -.026 | .028 | .079 | -.371 | .299 | -.056 | .102 | .144 | -.279 | .295 | -.379 | -.170 | .139 | .127 | ||||
1,3-Dicaproyl glyceride | ||||||||||||||||||||||||||
C24 | H35 | H36 | C25 | O26 | O30 | C41 | H45 | H46 | C40 | H44 | O49 | H48 | C39 | H42 | H43 | O19 | C6 | O7 | C5 | H16 | H17 | |||||
0 | -.152 | .120 | .117 | .288 | -.363 | -.229 | .013 | .105 | .110 | .034 | ..092 | -.315 | .207 | -.062 | .119 | .089 | -.242 | .289 | -.335 | -.152 | .120 | .121 | ||||
0.1 | -.155 | .123 | .120 | .303 | -.331 | -.254 | -.034 | .127 | .103 | .045 | .089 | -.311 | .213 | -059. | .395 | .088 | -.231 | .285 | -.485 | -.158 | .124 | .131 | ||||
1 | -.124 | .140 | .128 | .339 | -.144 | -.342 | -.031 | -.297 | .136 | .072 | .115 | -.326 | .229 | -.040 | .123 | .115 | -.260 | .309 | -.405 | -.179 | .124 | .128 | ||||
10 | -.134 | .145 | .129 | .337 | -.174 | -.353 | -.001 | -.262 | .157 | .067 | .141 | -.344 | .218 | -.036 | .139 | .084 | -.281 | .282 | -.488 | -.164 | .134 | .153 | ||||
100 | -.154 | .150 | .134 | .340 | -.230 | -.387 | .039 | -.043 | .158 | .159 | .154 | -.406 | .055 | -.085 | .193 | .158 | -.292 | .226 | -.479 | -.199 | .123 | .137 | ||||
1,2,3-Tricaproyl glyceride | ||||||||||||||||||||||||||
C5 | H16 | H17 | C6 | O7 | O19 | C38 | H63 | C60 | H64 | H56 | O57 | C44 | O45 | C43 | H54 | H55 | C58 | H51 | H52 | O59 | C25 | C26 | C24 | H35 | H31 | |
0 | -.151 | .121 | .295 | .295 | -.359 | -.227 | .028 | .122 | -.073 | .145 | .112 | -.142 | .285 | -.354 | -.153 | .118 | .119 | -.023 | .103 | .117 | -.241 | .291 | -354 | -152 | .120 | .120 |
0.1 | -.151 | .125 | .291 | .291 | -.379 | -.222 | .030 | .125 | .000 | .157 | .112 | -.242 | .283 | -.365 | -.149 | .120 | .120 | -.023 | .110 | .122 | -.215 | ‘283 | -413 | -157 | .135 | .135 |
1 | -.216 | .134 | .322 | .322 | -399 | -.241 | .041 | .128 | -.077 | .152 | .114 | -.249 | .289 | -.383 | -.157 | .121 | .125 | -.022 | .107 | .114 | -.238 | .328 | -411 | -218 | .148 | .158 |
10 | -.247 | .147 | .338 | .388 | -.390 | -.269 | 061 | .120 | -.073 | .153 | .103 | -.251 | .289 | -.377 | -.151 | .123 | .118 | -.084 | .097 | .108 | -.272 | .346 | -412 | -214 | .145 | .151 |
100 | -.213 | .116 | .315 | .315 | -.412 | -.261 | .039 | .125 | -059 | .158 | .105 | .250 | .290 | -.389 | -.158 | .125 | .120 | -.008 | .110 | .117 | -.283 | .320 | -426 | .177 | .145 | .155 |
SMF flux density dependent bond lengths [Å] between selected particular atoms in molecules of mono-, di- and tri-caproyl glycerides.
SMF [AMFU] | Bond length [Å] between particular atoms at SMF flux density | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1-Caproyl glyceride | ||||||||||||||||||||||||||
C18- H29 | C18- H30 | C18- C19 | C19= O20 | C19- O4 | O4- C3 | C3- H11 | C3- C2 | C2- H9 | C2- O5 | O5- H12 | C2- C1 | C1- H7 | C1- H8 | C1- O6 | O1.- H13 | |||||||||||
0 | 1.090 | 1.090 | 1.520 | 1.220 | 1.360 | 1.430 | 1.090 | 1.540 | 1.090 | 1.430 | 0.960 | 1.540 | 1.090 | 1.090 | 1.430 | 0.950 | ||||||||||
0.1 | 1.122 | 1.122 | 1.448 | 1391 | 1.365 | 1.428 | 1.103 | 1.556 | 1.105 | 1.400 | 0.960 | 1.550 | 1.102 | 1.105 | 1.435 | 0.971 | ||||||||||
1 | 1.350 | 1.336 | 1.388 | 1.499 | 1.471 | 1.370 | 1.126 | 1.616 | 1.200 | 1.409 | 0.983 | 1.597 | 1.128 | 1.131 | 1.481 | 0.993 | ||||||||||
10 | 1.512 | 1.753 | 1.426 | 1.469 | 1.507 | 1.391 | 1.136 | 1.578 | 1.222 | 1.388 | 1.006 | 1.591 | 1.124 | 1.155 | 1.438 | 1.086 | ||||||||||
100 | 1.007 | 3.558 | 1.454 | 1.390 | 1.476 | 1.395 | 1.151 | 1.592 | 1.330 | 1.336 | 1.822 | 1.663 | 1.186 | 1.133 | 1.413 | 1.296 | ||||||||||
2-Caproyl glyceride | ||||||||||||||||||||||||||
C16- H29 | C16- H30 | C18- C19 | C19= O20 | C19- O4 | O4- C2 | C2- C3 | C3- H9 | C3- H10 | C3- O12 | O12- H13 | C2-C1 | C1- H7 | C1- H6 | C1- O5 | O5-H11 | |||||||||||
0 | 1.129 | 1.143 | 1495 | 1.234 | 1.366 | 1.430 | 1.527 | 1.190 | 1.139 | 1.295 | 1.415 | 1.528 | 1.138 | 1.129 | 1.371 | 0.983 | ||||||||||
0.1 | 1.152 | 1.175 | 1.433 | 1.360 | 1.354 | 2.456 | 1.487 | 1.172 | 1.254 | 1.184 | 1.537 | 1.509 | 1.172 | 1.148 | 1.325 | 1.005 | ||||||||||
1 | 1.135 | 1.162 | 1.528 | 1.175 | 1.378 | 1.430 | 1.482 | 1.113 | 1.251 | 1.462 | 1.638 | 1.520 | 1.163 | 1.143 | 1.373 | 0.979 | ||||||||||
10 | 1.145 | 1.150 | 1.433 | 1.424 | 1.334 | 1.434 | 1.549 | 1.160 | 1.267 | 1.281 | 1.823 | 1.524 | 1.169 | 1.144 | 1.356 | 0.983 | ||||||||||
100 | 1.183 | 1.255 | 1.481 | 1.188 | 1.343 | 1.449 | 1.600 | 1.217 | 1.327 | 1.320 | 2.799 | 1.547 | 1.176 | 1.129 | 1.353 | 1.035 | ||||||||||
1,2-Dicaproyl glyceride | ||||||||||||||||||||||||||
C5- H16 | C5- H17 | C5- C6 | C6= O7 | C6- O19 | O19- C40 | C40- H45 | C40- C39 | C39- H44 | C39- H43 | C39- O42 | O42- H48 | C40- C41 | C41- H46 | C41- H47 | C4- O38 | O38- C25 | C25= O26 | C25- C24 | C24- H35 | C24- H36 | C24- C23 | |||||
0 | 1.090 | 1.090 | 1.520 | 1.220 | 1.360 | 1.430 | 1.090 | 1.540 | 1090 | 1.090 | 1.430 | 0.950 | 1.540 | 1.090 | 1.090 | 1.430 | 1.360 | 1.220 | 1.520 | 1.090 | 1.090 | 1.540 | ||||
0.1 | 1.173 | 1.172 | 1.463 | 1.262 | 1.418 | 1.454 | 1.136 | 1.567 | 1.130 | 1.170 | 1.392 | 1.283 | 1.527 | 1.130 | 1.205 | 1.400 | 1.457 | 1.205 | 1.469 | 1.123 | 1.201 | 1.502 | ||||
1 | 1.193 | 1.184 | 1.253 | 1.289 | 1.395 | 1.460 | 1.145 | 1.545 | 1.240 | 1.159 | 1.280 | 1.729 | 1.524 | 1.129 | 1.160 | 1.455 | 1.361 | 1.301 | 1.456 | 1.125 | 1.255 | 1.498 | ||||
10 | 1.199 | 1.177 | 1.480 | 1.193 | 1.437 | 1.435 | 1.109 | 1.572 | 1.252 | 1.128 | 1.317 | 2.656 | 1.658 | 1.397 | 1.124 | 1.410 | 1.388 | 1.198 | 1.480 | 1.186 | 1.294 | 1.533 | ||||
100 | 1.268 | 1.220 | 1.484 | 1.296 | 1.420 | 1.429 | 1.185 | 1.596 | 1.332 | 1.148 | 1.312 | 3.037 | 1.527 | 1.177 | 1.109 | 1.440 | 1.421 | 1.298 | 1.446 | 1.122 | 1.396 | 1.501 | ||||
1,3-Dicaproyl glyceride | ||||||||||||||||||||||||||
C24- H35 | C24- H36 | C24- C25 | C25= O26 | C25- O30 | O30- C41 | C41- H45 | C41- H46 | C41- C40 | C40- H44 | C40- O47 | C40- H48 | C40- C39 | C39- H42 | C39- H43 | C39- O19 | O19- C6 | C6- O7 | C6- C5 | C5- H16 | C5- H17 | C5- C4 | |||||
0 | 1.090 | 1.090 | 1.520 | 1.220 | 1.360 | 1.430 | 1.090 | 1.090 | 1.540 | 1.090 | 1.420 | 0.960 | 1.540 | 1.090 | 1.090 | 1.430 | 1.360 | 1.228 | 1.520 | 1.090 | 1.090 | 1.540 | ||||
0.1 | 1.137 | 1.119 | 1.495 | 1.207 | 1.427 | 1.374 | 1.124 | 1.110 | 1.506 | 1.161 | 1.422 | 1.011 | 1.527 | 1.161 | 1.110 | 1.457 | 1.324 | 1.292 | 1.486 | 1.118 | 1.200 | 1.504 | ||||
1 | 1.140 | 1.129 | 1.444 | 1.152 | 1.731 | 1.257 | 1.350 | 1.155 | 1.507 | 1.280 | 1.408 | 1.101 | 1.502 | 1.110 | 1.135 | 1.508 | 1.325 | 1.278 | 1.486 | 1.127 | 1.173 | 1.470 | ||||
10 | 1.270 | 1.135 | 1.451 | 1.195 | 1.762 | 1.339 | 2.448 | 1.135 | 1.470 | 1.250 | 1.461 | 1.099 | 1.412 | 1.157 | 1.135 | 1.457 | 1.539 | 1.442 | 1.528 | 1.155 | 1.733 | 1.533 | ||||
100 | 1.340 | 1.127 | 1.497 | 1.241 | 1.816 | 1.478 | 2.607 | 1.147 | 1.408 | 1.208 | 1.516 | 1.101 | 1.468 | 1.208 | 1.091 | 1.468 | 1.868 | 1.621 | 1.508 | 1.203 | 1.727 | 1.549 | ||||
1,2,3-Tricaproyl glyceride | ||||||||||||||||||||||||||
C5- H16 | C5- H17 | C5- C6 | C6= O7 | C6- O19 | O19- C38 | C38- H63 | C38- C60 | C60- H54 | C60- H65 | C60- O57 | O57- C44 | C44= O45 | C44- C43 | C43- H54 | C43- H55 | C43- C42 | C38- C58 | C58- H61 | C58- H62 | C58- O59 | O59- C25 | C25= O26 | C25- C24 | C24- H35 | C24- H36 | |
0 | 1.090 | 1.090 | 1.520 | 1.220 | 1.360 | 1.430 | 1.090 | 1.540 | 1.090 | 1.090 | 1.430 | 1.220 | 1.360 | 1.540 | 1.090 | 1.090 | 1.540 | 1.540 | 1.090 | 1.090 | 1.430 | 1.360 | 1.220 | 1.520 | 1.090 | 1.090 |
0.1 | 1.119 | 1.115 | 1.508 | 1.470 | 1.373 | 1.448 | 1.108 | 1.510 | 1.115 | 1.102 | 1.437 | 1.360 | 1.254 | 1.520 | 1.095 | 1.096 | 1.521 | 1.534 | 1.108 | 1.107 | 1.427 | 1.387 | 1.378 | 1.451 | 1.134 | 1..131 |
1 | 1.351 | 1.359 | 1.475 | 1.295 | 1.476 | 1.401 | 1.476 | 1.400 | 1.120 | 1.164 | 1.475 | 1.376 | 1.291 | 1.510 | 1.125 | 1.125 | 1.572 | 1.572 | 1.128 | 1,129 | 1.418 | 1.414 | 1.397 | 1.403 | 1.334 | 1.385 |
10 | 1.469 | 1.432 | 1.502 | 1.740 | 1.476 | 1.401 | 1.476 | 1.551 | 1.172 | 1.172 | 1.451 | 1.377 | 1.285 | 1.532 | 1,116 | 1.116 | 1.550 | 1.550 | 1.136 | 1.126 | 1.432 | 1.418 | 1.393 | 1.435 | 1.342 | 1.486 |
100 | 2.177 | 2.182 | 1.554 | 1.311 | 1388 | 1.388 | 1.515 | 1.167 | 1.248 | 1.178 | 1.499 | 1.360 | 1.381 | 1.515 | 1.124 | 1.292 | 1.624 | 1.524 | 1.129 | 1.117 | 1.452 | 1.407 | 1.423 | 1.431 | 1.090 | 2.364 |
Figure
An increase in heat of formation of lipid acids (Table
The structure dependent orders of increasing heat of formation of lipid acids changed in the order:
trans-linolenic > linoleic > linolenic > elaidic > vaccenic > stearic > oleic
and associated dipole moments of those molecules declined in the order:
vaccenic > trans-linolenic > linolenic > stearic > oleic > elaidic > linoleic
These orders show that both these parameters are independent of the number of double bonds and chain conformation.
The increase in heat of formation and dipole moment of caproyl glycerides present following orders:
heat of formation: 1,2,3-tricaproyl > 1,2-dicaproyl > 2-monocaproyl > 1-monocaproyl> 1,3-dicaproyl
and
dipole moment: 1-monocaproyl > 2-monocaproyl > 1,2,3-tricaproyl > 1,3-dicaproyl > 1,2-dicaproyl
showing that this sequence of those parameters is independent of the degree and position of the esterification.
An insight in Fig.
In the living organisms lipids under consideration are utilized in metabolic processes. Fatty acids are beta-oxidized in mitochondria and peroxisomes The beta oxidation is the major pathway for fatty acid degradation, but certain fatty acids also undergo the alfa oxidation. The mechanism of beta oxidation resembles a reversal process of fatty acid synthesis. Two-carbon fragments are removed sequentially from the carboxyl end of the acid after steps of dehydrogenation, hydration, and oxidation to form a beta-keto acid, which is split by thiolysis which generates acetyl-CoA. The latter may be converted into ATP, CO2, and H2O using the citric acid cycle and the electron transport chain. Unsaturated and odd-chain fatty acids require additional enzymatic steps for degradation (
Metabolism of triacylglycerols, named here as glycerides, usually involves either their partial or complete hydrolysis by lipases yielding lipid acid and glycerol (
Taking into account that information, Table
An insight into Tables
The atoms constituting the carboxylic group are the most susceptible to SMF. Apart from atoms of the carboxylic hydroxyl group (atoms H58 and O55) and the β-chain carbon atom (C16), the 0.1 AMFU flux density has negligible effect on the charge densities on remaining atoms under consideration. Generally, flux density raising to 1 AMFU increased the positive charge density on the carbon atom bound hydrogen atoms (H58-51) and O55-bound hydrogen atom H58, indicating the direction of the corresponding bond polarization. Rising SMF flux density to 1 AMFU increases also the negative charge density on the O55 atom. Simultaneously, it decreases negative charge density on the O19, C17 and C16 atoms. Values of the positive charge density on the carbonyl carbon atom (the CDCC criterion) show that SMF of 0.1 AMFU weakly stimulates the first step of the metabolic process of stearic acid and SMF of 1 AMFU inhibits that process. The C=C bond formation (The CCF criterion) is inhibited by SMF of 0.1 AMFU and considerably stimulated by SMF of 1 AMFU,
The bent shape of the molecule of oleic acid (Fig.
The introduction of the subsequent isolated double C=C bond into the 18 carbon chain (linoleic acid) results in further deformation of the chain and, hence, increases efficiency of intramolecular, through space, interaction. An increase in the resistance of the molecule to SMF flux density is noted. Computations reveal that the molecule survives exposure to the flux density of 100 AMFU. In this molecule the positive charge increases against a flux density increase on the H52, H40, H41, H42, H10, H13 and H14 atoms and, simultaneously, the decrease of that charge is observed on the C28, H43 and H37 atoms. An increase in the negative charge against flux density takes place on the O36, O55, C30, C26 and C4 atoms. It is accompanied by a decrease in the negative charge on the C29, C1 and C3. 100 AMFU flux density turns the negative charge on the C1 atom into positive. A relatively weak sensitivity of the bond lengths to an increase in the flux density is observed. Based on the CDCC and CCF criteria SMF of 0.1 to 100 AMFU inhibits the first step of the metabolic process and stimulates its second step.
The third double bond in the 18 carbon atom chain (linolenic acid) offers further possibilities of building resistance to an increase in the flux density (Fig.
The structure of trans-monounsaturated elaidic acid (Fig.
In the molecule of vaccenic acid (trans-11-enoic acid) (Fig.
No trans-cis isomerization takes place in the molecule of trans-linolenic acid (Fig.
In a case of mono-, di- and three-caproyl glycerides the charge density on the carboxylic carbon atom varies irregularly with an increase in applied flux density. Solely in 1,2,3-tricaproyl glyceride the flux density, regardless of its value, always stimulates the hydrolysis (see Table
Mainly two factors are responsible for susceptibility of molecules to SMF. The Lorentz force is one of them. It acts on moving electrons, which at high intensity influences the natural geometry of orbitals. This problem is quite difficult to include in the calculations, so the simplified approach does not take it into account. The second reason is the a ceasing of the coherence of the binding electron pair is the second factor. It persists despite electrostatic repulsion by magnetic interactions. A very strong external magnetic field competes with mutual fields evoking splitting the binding electron pairs into two unpaired electrons. The process runs as a gradual weakening of the mutual pairing of electrons. The binding electron pair is the fundamental element of the chemical bond. On growing SMF, such bonds initially expand and in order to disintegrate on exceeding the critical length. It generates a pair of radicals. Such radicals are very chemically active and can bind to ambient molecules, changing their chemical structure and, therefore, also their biological activity.
The distribution of electrical charges in all analyzed lipids resemble one another. Except the carbonyl carbon atom remaining carbon atoms take higher electron density. The exceptional H45 atom in 1,3-dicaproyl glycerol at a field above 1 AMFU faces an electron deficit. The exceptional carbonyl carbon atom carries a clear electron deficit. It results from bonding that atom to the strongly electron withdrawing oxygen atom. The anomaly of the H45 atom is a consequence of the specific conformation of the molecule of this ester.
SMF destabilizes lipid acids and caproyl glycerides irregularly against increasing flux density. The changes in the heat of formation of those compounds are accompanied also by irregular against increasing flux density increase in the dipole moment of those molecules. Observed irregularities result from the ability of those molecules to twist out of the initially established SMF plain, and squeezing fragments of the molecules around some bonds. Such mobility of the molecules in SMF provides a possibility of through space interactions between fragments of the molecules. These interactions involve van der Waals bonding and dispersion forces. These circumstances are responsible for irregular against applied flux density changes of the charge density of the atoms and length of the bonds between them. For these reasons either stimulation or inhibition of the metabolic processes of the lipids under consideration irregularly depends on the flux density.
In some molecules SMF flux density of 10 AMFU and above breaks some C-H valence bonds. In such manner free radicals are generated.
The sole conversion of the cis-trans conformations was observed in case of elaidic acid which at 10 AMFU converted into cis conformer. Depending on the structure and applied flux density SMF either stimulates or inhibits the metabolic processes of the lipids under study.