Key Biodiversity Areas: Rapid assessment of phytoplankton in the Mesopotamian Marshlands of southern Iraq

Ghasak S. Al-Obaidi¹, Suad K. Salman², Clayton D.A. Rubec³

¹ Nature Iraq, Sulaimani, Kurdistan, Iraq ² Nature Iraq, Baghdad, Iraq ³ Centre for Environmental Stewardship and Conservation, Ottawa, Canada

Corresponding authors: Ghasak S. Al-Obaidi (ghasak.sabah@natureiraq.org), Suad K. Salman (ssuadksalman2000@yahoo.com), Clayton D.A. Rubec (rubec@rogers.com)

Abstract
Between the summers of 2005 and 2007, studies have been conducted for five seasons in several marsh locations in southern Iraq. During five surveys, 317 taxa of phytoplankton belonging to six major groups were identified. These included: 204 taxa of Bacillariophyceae (represented by 13 Centrales and 191 Pennales, thus 14% and 27% respectively of all taxa recorded), 59 Chlorophyta (28%), one Cryptophyta (4%), 39 Cyanophyta (21%), 10 Euglenophyta (2%) and four Pyrrophyta (4% of all the taxa recorded). The Central Marsh, Hammar Marsh and the Hawizeh Marsh had higher phytoplankton populations compared to all other studied sites. The dominant phytoplankton groups throughout the study area were the Bacillariophyceae, Chlorophyta and Cyanophyta. The dominant species were Cyclotella meneghiniana, Kirchneriella irregularis and Nitzschia palea. A progression in the richness and biodiversity of species occurred during winter. These three phytoplankton groups were dominant in waters of southern Iraq and were responsible for most of the species richness and diversity observed. Generally, sites changed from summer to winter according to the changing conditions associated with nutrients, salinity, temperature, and light intensity. These controlling factors influenced phytoplankton biomass from season to season.

Keywords
Phytoplankton, Iraq, marshlands
Introduction

Aquatic ecosystems are dynamic with several biotic and abiotic variables changing in space and time. From 2005 to 2007, after reflooding of the southern marshes, the Key Biodiversity Areas (KBA) project led by Nature Iraq undertook ecological surveys of flora and fauna across southern Iraq (Rubec and Bachmann 2008). The KBA Project was involved a rapid assessment in several marshes to understand changes that took place in the physicochemical characteristics of the marshes and consequently changes in phytoplankton composition. Most of the surveys occurred in the Central Marsh, Hammar Marsh, Hawizeh Marsh, Middle Euphrates, the Khor al-Zobayr, the Seasonal Marshes and the Shatt al-Arab. Although, the phytoplankton flora in some of these marshes has been studied previously, the present study contributes new information on the current status of phytoplankton populations and their diversity in these ecosystems. This is in relation to physicochemical characteristics of these waters after several decades of major environmental degradation caused by conflict, dam building in the Tigris-Euphrates Basin and directed drainage by the previous regime.

Wetlands are ecosystems in which the soil, despite periodic fluctuations in water level, is more or less continuously waterlogged. Non-marine wetlands generally have a water depth less than 2 m and, by this definition comprise as much as 6% of the land area of the earth’s surface (Mitsch and Gosselink 1993). Studies have shown that marshes are suitable areas for the growth of several types of algae and higher aquatic plants. The marshes of southern Iraq seem especially suitable for growth of algae so that they diversify widely due to the shallow waters, the slow flow of the water attributable to low gradients and suitable nutrient concentrations and temperatures (Yaaqub 1992). Therefore, these algae have been widely used for water quality monitoring, and as they are primary producers, they are easily affected by physical and chemical variations in their environment (Bartram and Balance 1996).

Temporal and spatial distributions of phytoplankton are determined by a variety of environmental factors, including sunlight, the availability of essential nutrients and water temperature. Hinton and Maulood (1980, 1982) showed that at least 77 diatom taxa and 101 non-diatom taxa are known from the brackish waters of southern Iraq, the Shatt al-Arab and the Hammar Marsh. A total of 129 algal species and 63 genera were in the marshes near Qurna (Pankow et al. 1979, Al-Saboonchi et al. 1982). Some 72 Bacillariophyta, 28 Chlorophyta, 26 Cyanophyta, two Euglenophyta, and one Cryptophyta have been recorded in Hammar Marsh (Nurul-Islam 1982). Dinoflagellates have also been recorded in the marshes (Evans 2001).

Materials and methods

For qualitative studies of phytoplankton, samples were taken by a phytoplankton net manufactured by Hydro-Bios (23 μm in pore diameter), which was placed into the water 10 to 15 cm below the water surface and pulled at an appropriate speed for 10 to15
The phytoplankton collected was transferred to a polyethylene container and preserved by adding Lugol’s solution at a ratio of 1:100 with 40% formaldehyde until analyzed in the laboratory. The non-diatoms were identified by taking a drop of the sample on a slide with a slide cover, and then examined using a compound microscope (x10, x40 and x100). For diatom identification, a water sample was mixed with an equal volume of nitric acid in a 15 ml test tube to dissolve the organic matter surrounding the diatoms. The diatoms were precipitated by centrifuge and permanent slides were made using Canada balsam or Naphrax and a hot plate (Patrick and Riemer 1975).

For the quantitative study of phytoplankton, one-liter water samples were collected in polyethylene containers and preserved with a Lugol/formaldehyde solution (as described above). Following sedimentation the total number of phytoplankton organisms was counted (Furet and Benson-Evans 1982). Permanent slides were prepared and diatoms were identified using a compound microscope. Smith (1950), Prescott (1944, 1982) and Thompson (1959) were references used in phytoplankton identification. The Shannon-Wiener Diversity Index (H) was used to determine the diversity and compare among stations. This was done using the statistical software CANOCO 4.5 package (Ter Braak and Šmilauer 2002); the equation is:

\[
H = -\sum (\frac{N_i}{N}) \cdot \ln \left(\frac{N_i}{N}\right)
\]

- \(N = \) the hall summation of species density in the single station
- \(N_i = \) density of single species

Study area

Most of the field sites in southern Iraq had not been surveyed since at least 1979 or earlier. An initial February and March 2005 survey was restricted to seven sites in southern Iraq. It was limited by practical and security issues in that period and seen as a start-up, experience-building exercise. All other southern KBA sites were included in the subsequent 2005 through 2007 surveys. In order to facilitate field survey logistics, seven major wetland areas as shown in Fig. 1 and Table 1 were defined.

Results and discussion

Throughout the five surveys conducted, 317 phytoplankton taxa belonging to six major algal categories were identified. These include 204 Bacillariophyceae (13 Centrales and 191 Pennales representing 14% and 27% of the total taxa recorded respectively); 59 Chlorophyta (28% of all taxa recorded); one Cryptophyta (4%); 39 Cyanophyta (21%); 10 Euglenophyta (2%); and 4 Pyrrophyta (4%).

During summer 2005 survey, Cyanophyta had the highest total count (90,207.1 × 10³ cells L⁻¹). The dominant Cyanophyta species were *Anabaena* sp., *Microcystis aeruginosa*, *Merismopedia convolute*, *Oscillatoria geitleri*, *Oscillatoria limnetica*, and *Lyngbya*
These genera of Cyanophyta are known for their ability to produce potential toxic substances especially Anabaena, Lyngbya and Microcystis (Sivonen and Jones 1999, Carmichael 2001). These species are also among the most abundant Cyanophyta in fresh and brackish waters (Huisman et al. 2005). Microcystis possesses gas vesicles that make them buoyant. This characteristic may have aided in the dominance of this species because it allows it to receive more light than species lacking gas vesicles (Seckbach 2007). Most of these dominant Cyanophyta prefer relatively alkaline, warmer, saline and nutrient-rich waters (Wehr and Sheath 2003, Al-Saadi and Sulaiman 2006).
The Cyanophyta were followed in abundance by the diatoms, Chlorophyta and Pyrrophyta, as shown in Appendix 1.

During both the winter and summer 2006 surveys, Chlorophyta had the highest total counts \((37,308.9 \times 10^3 \text{ cells L}^{-1} \text{ and } 23,180.8 \times 10^3 \text{ cells L}^{-1})\) respectively. The Chlorophyta is known to occur primarily in freshwater. It was mainly dominated by *Kirchneriella irregularis*, *Scenedesmus quadricauda*, *Monoraphidium contortum* and *Coelastrum astroideum*. Non-motile chlorophytes were a component of the plankton community (e.g. *Monoraphidium*, *Coelastrum* and *Scenedesmus*). Under moderate conditions, these species are most abundant in freshwater ecosystems especially during the summer, when light and temperature are near their seasonal maximum and nutrients become a limiting factor. The diatoms followed the chlorophytes during both seasons in terms of abundance \((41,804.5 \times 10^3 \text{ cells L}^{-1} \text{ and } 23,180.8 \times 10^3 \text{ cells L}^{-1})\) and were dominated by *Cyclotella atomus*, *Cyclotella meneghiniana*, *Achnanthes minutissima*, *Fragilaria ulna*, *Fragilaria vaucheriae*, *Nitzschia gracilis*, *Nitzschia longissima* and *Nitzschia palea*. *Cyclotella meneghiniana* is known to prefer relatively slow flowing, saline and alkaline waters (Stoermer and Smol 2004).

Achnanthes minutissima was one of the dominant pennate diatoms probably because this species is physiologically more active than larger diatom cells. This would partly be due to its large surface to volume ratios (Allen 1977). Usually, dominant algal groups of nutrient-rich, temperate freshwater wetlands include pennate diatoms, typically genera such as *Achnanthes*, *Fragilaria*, *Navicula* and *Nitzschia* (Stevenson et al. 1996). In the winter 2007 survey, Bacillariophyceae/Pennales had the highest total count \((29,674.2 \times 10^3 \text{ cells L}^{-1})\). The dominant species was *Nitzschia palea*, one of the most common species in this genus, which is often found in organically polluted waters (Palmer 1969). In addition, *Oscillatoria limnetica* was the main cyanophyte, *Peridinium cinctum* the main dinoflagellate and *Kirchneriella irregularis* the main chlorophyte observed. In the summer of 2007 survey, the chlorophytes that had the highest total counts \((54,473.4 \times 10^3 \text{ cells L}^{-1})\) were *Kirchneriella irregularis*, *Scenedesmus quadricauda* and *Monoraphidium convolutum*.

Generally, in all of these surveys, the highest cell concentrations were in the Central Marsh, Hammar Marsh and Hawizeh Marsh (Table 2). Among the 24 sites in the Central Marsh, those with the highest diversity were Al Kinziryi, the Al Hammar Area and Al Fhood. From the 20 sites in the Hammar Marsh, the most diverse site was Al Salal. Ojayradah was the most diverse site among the seven sites in the Hawizeh Marsh.

Therefore, algal assemblages may differ between restored and extant wetlands and could be valuable indicators of restoration success because algal species composition and diversity would differ in low- and high-nutrient wetlands (John 1993, Mayer and Galatowitsch 1999 as cited in Stevenson et al. 2006). Sites obviously also revealed changes from summer to winter, associated with changes in nutrients, temperature and light intensity. Therefore, changes in seasonality as shown by varying environmental variables could strongly affect phytoplankton variability (Abdul-Hussein and Mason 1988). Variations in the annual temperature regime appear to be the major cause of temporal variability of phytoplankton in the area, as observed by Gayoso (1998).
Table 2. Total count (× 10³ cell L⁻¹) and percentage of identified phytoplankton groups in locations surveyed during summer 2005 to summer 2007. Major wetland areas: Hammar Marshes (HA), Central Marshes (CM), Hawizeh Marshes (HZ), Mesopotamian Marshes (MP), Seasonal Marshes (SM), Shatt al-Arab Marshes (SA), Khor al-Zobayr Marshes (KZ).

<table>
<thead>
<tr>
<th>Survey</th>
<th>Sites</th>
<th>Bac./Centrales</th>
<th>Bac./Pennales</th>
<th>Chlorophyta</th>
<th>Cryptophyta</th>
<th>Cyanophyta</th>
<th>Euglenophyta</th>
<th>Pyrrophyta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer 2005</td>
<td>CM</td>
<td>10598.6</td>
<td>43.3</td>
<td>19385.0</td>
<td>49.5</td>
<td>22602.7</td>
<td>56.9</td>
<td>43060.4</td>
</tr>
<tr>
<td></td>
<td>HA</td>
<td>10282.8</td>
<td>42.0</td>
<td>9820.5</td>
<td>25.1</td>
<td>12346.9</td>
<td>31.1</td>
<td>3553.5</td>
</tr>
<tr>
<td></td>
<td>HZ</td>
<td>340.9</td>
<td>1.4</td>
<td>4328.4</td>
<td>11.1</td>
<td>4387.5</td>
<td>11.1</td>
<td>46.3</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>2877.4</td>
<td>11.8</td>
<td>3917.0</td>
<td>10.0</td>
<td>347.4</td>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>KZ</td>
<td>270.1</td>
<td>1.1</td>
<td>154.4</td>
<td>0.4</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>91.0</td>
<td>0.4</td>
<td>1556.3</td>
<td>4.0</td>
<td>10.1</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>SM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>Summer 05</td>
<td>24460.8</td>
<td>100.0</td>
<td>39161.6</td>
<td>100.0</td>
<td>39695.6</td>
<td>100.0</td>
<td>3320.1</td>
</tr>
<tr>
<td>Winter 2006</td>
<td>CM</td>
<td>9436.7</td>
<td>79.6</td>
<td>20155.6</td>
<td>53.5</td>
<td>35860.9</td>
<td>96.1</td>
<td>2889.2</td>
</tr>
<tr>
<td></td>
<td>HA</td>
<td>311.5</td>
<td>2.6</td>
<td>6394.7</td>
<td>17.0</td>
<td>86.7</td>
<td>0.2</td>
<td>19.2</td>
</tr>
<tr>
<td></td>
<td>HZ</td>
<td>1114.1</td>
<td>9.4</td>
<td>6305.5</td>
<td>16.7</td>
<td>980.2</td>
<td>2.6</td>
<td>4710.1</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>581.9</td>
<td>4.9</td>
<td>2278.5</td>
<td>6.0</td>
<td>363.0</td>
<td>1.0</td>
<td>7518.8</td>
</tr>
<tr>
<td></td>
<td>KZ</td>
<td>133.6</td>
<td>1.1</td>
<td>214.6</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>MP</td>
<td>279.4</td>
<td>2.4</td>
<td>2321.8</td>
<td>6.2</td>
<td>18.1</td>
<td>0.0</td>
<td>344.2</td>
</tr>
<tr>
<td></td>
<td>SM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>Winter 06</td>
<td>11857.2</td>
<td>100.0</td>
<td>37670.7</td>
<td>100.0</td>
<td>37308.9</td>
<td>100.0</td>
<td>87145.0</td>
</tr>
<tr>
<td>Summer 2006</td>
<td>CM</td>
<td>3752.7</td>
<td>20.0</td>
<td>7209.2</td>
<td>31.3</td>
<td>17254.7</td>
<td>74.4</td>
<td>2128.6</td>
</tr>
<tr>
<td></td>
<td>HA</td>
<td>11638.3</td>
<td>61.9</td>
<td>7063.5</td>
<td>30.7</td>
<td>1575.4</td>
<td>6.8</td>
<td>54.3</td>
</tr>
<tr>
<td></td>
<td>HZ</td>
<td>280.1</td>
<td>1.5</td>
<td>3654.1</td>
<td>15.9</td>
<td>2778.2</td>
<td>12.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>2769.8</td>
<td>14.7</td>
<td>4440.5</td>
<td>19.3</td>
<td>1073.2</td>
<td>4.6</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>KZ</td>
<td>249.9</td>
<td>1.3</td>
<td>262.1</td>
<td>1.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>MP</td>
<td>102.2</td>
<td>0.5</td>
<td>382.1</td>
<td>1.7</td>
<td>499.3</td>
<td>2.2</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>SM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>Summer 06</td>
<td>18793.0</td>
<td>100.0</td>
<td>23011.5</td>
<td>100.0</td>
<td>23180.8</td>
<td>100.0</td>
<td>2183.9</td>
</tr>
</tbody>
</table>
Key Biodiversity Areas: Rapid assessment of phytoplankton in the Mesopotamian Marshlands...

Survey Sites

<table>
<thead>
<tr>
<th>Survey</th>
<th>Sites</th>
<th>Bac./Centrales</th>
<th>Bac./Pennales</th>
<th>Chlorophyta</th>
<th>Crypto-phyta</th>
<th>Cyanophyta</th>
<th>Euglenophyta</th>
<th>Pyrrophyta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter 2007</td>
<td>CM</td>
<td>9861.7</td>
<td>11345.6</td>
<td>8166.7</td>
<td>5869.2</td>
<td>455.2</td>
<td>56.5</td>
<td>905.5</td>
</tr>
<tr>
<td></td>
<td>HA</td>
<td>1946.3</td>
<td>5734.9</td>
<td>8605.9</td>
<td>1240.9</td>
<td>1486.8</td>
<td>81.5</td>
<td>2571.6</td>
</tr>
<tr>
<td></td>
<td>HZ</td>
<td>1771.9</td>
<td>4102.8</td>
<td>1495.8</td>
<td>1023.4</td>
<td>3691.3</td>
<td>57.9</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>528.0</td>
<td>2334.7</td>
<td>299.1</td>
<td>289.7</td>
<td>83.6</td>
<td>63.4</td>
<td>108.8</td>
</tr>
<tr>
<td></td>
<td>KZ</td>
<td>1161.8</td>
<td>153.6</td>
<td>434.9</td>
<td>625.0</td>
<td>489.2</td>
<td>272.7</td>
<td>153.9</td>
</tr>
<tr>
<td></td>
<td>MP</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>SM</td>
<td>247.9</td>
<td>6002.6</td>
<td>154.0</td>
<td>9.1</td>
<td>173.2</td>
<td>5.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>CM</td>
<td>5206.2</td>
<td>25941.5</td>
<td>19156.4</td>
<td>9057.3</td>
<td>6379.3</td>
<td>1053.8</td>
<td>4002.5</td>
</tr>
<tr>
<td></td>
<td>HA</td>
<td>8125.3</td>
<td>7133.0</td>
<td>13017.4</td>
<td>1222.8</td>
<td>2230.2</td>
<td>283.1</td>
<td>743.7</td>
</tr>
<tr>
<td></td>
<td>HZ</td>
<td>191.1</td>
<td>1501.5</td>
<td>7655.6</td>
<td>126.8</td>
<td>1026.8</td>
<td>11.1</td>
<td>126.9</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>1480.0</td>
<td>1416.3</td>
<td>542.9</td>
<td>9.1</td>
<td>763.8</td>
<td>0.0</td>
<td>55.4</td>
</tr>
<tr>
<td></td>
<td>KZ</td>
<td>134.6</td>
<td>121.3</td>
<td>28.2</td>
<td>0.1</td>
<td>9.1</td>
<td>0.0</td>
<td>63.4</td>
</tr>
<tr>
<td></td>
<td>MP</td>
<td>244.9</td>
<td>1842.7</td>
<td>40.4</td>
<td>18.1</td>
<td>27.2</td>
<td>19.2</td>
<td>371.4</td>
</tr>
<tr>
<td></td>
<td>SM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>Winter 2007</td>
<td>15517.6</td>
<td>29674.2</td>
<td>19156.4</td>
<td>9057.3</td>
<td>6379.3</td>
<td>1053.8</td>
<td>4002.5</td>
</tr>
</tbody>
</table>

Summer 2007

<table>
<thead>
<tr>
<th>Site</th>
<th>Bac./Centrales T.C.</th>
<th>Bac./Pennales T.C.</th>
<th>Chlorophyta T.C.</th>
<th>Crypto-phyta T.C.</th>
<th>Cyanophyta T.C.</th>
<th>Euglenophyta T.C.</th>
<th>Pyrrophyta T.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>5206.2</td>
<td>25941.5</td>
<td>19156.4</td>
<td>9057.3</td>
<td>6379.3</td>
<td>1053.8</td>
<td>4002.5</td>
</tr>
<tr>
<td>HA</td>
<td>8125.3</td>
<td>7133.0</td>
<td>13017.4</td>
<td>1222.8</td>
<td>2230.2</td>
<td>283.1</td>
<td>743.7</td>
</tr>
<tr>
<td>HZ</td>
<td>191.1</td>
<td>1501.5</td>
<td>7655.6</td>
<td>126.8</td>
<td>1026.8</td>
<td>11.1</td>
<td>126.9</td>
</tr>
<tr>
<td>SA</td>
<td>1480.0</td>
<td>1416.3</td>
<td>542.9</td>
<td>9.1</td>
<td>763.8</td>
<td>0.0</td>
<td>55.4</td>
</tr>
<tr>
<td>KZ</td>
<td>134.6</td>
<td>121.3</td>
<td>28.2</td>
<td>0.1</td>
<td>9.1</td>
<td>0.0</td>
<td>63.4</td>
</tr>
<tr>
<td>MP</td>
<td>244.9</td>
<td>1842.7</td>
<td>40.4</td>
<td>18.1</td>
<td>27.2</td>
<td>19.2</td>
<td>371.4</td>
</tr>
<tr>
<td>SM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>15382.1</td>
<td>37506.3</td>
<td>54473.4</td>
<td>2255.3</td>
<td>4512.3</td>
<td>1193.7</td>
<td>1987.0</td>
</tr>
</tbody>
</table>

Key Biodiversity Areas: Rapid assessment of phytoplankton in the Mesopotamian Marshlands...
According to richness and diversity indicators, the authors observed that there is an improvement in water quality in the southern Iraqi marshes especially in winter. This may be attributed to the fact that in winter nutrient levels are higher due to seasonally higher rainfall and thus higher runoff from the surrounding lands. Oxygen concentrations are also higher at lower temperatures. Canonical Correspondence Analysis (CCA) was used to elucidate the relationships between biological assemblages of the phytoplankton samples and their environment to determine the phytoplankton richness and diversity in the marshes. As a result, there was an increase in the phytoplankton richness and diversity of these marshes, as illustrated in Figs 2 and 3.

Each object shape in Fig. 2 demonstrates a phytoplankton sample obtained during the surveys, indicating the diversity and richness during the five surveys. Diversity and richness values of the first two surveys during the summer of 2005 and the winter of 2006 were scattered compared with the values recorded during the 2007 winter and summer, where they started to develop and increase in numbers.

Fig. 3 demonstrates that the phytoplankton diversity ranged between 1.6–2.1 during summer 2005 and winter 2006, while diversity values became higher during the following surveys ranging between 2.1 and 2.4, meaning that the diversity increased.

Figure 2. Seasonal phytoplankton diversity and richness in all sites.
It is clear that the diversity during the first two surveys was lower compared to the following surveys where the diversity began to even out and fluctuate to a lesser degree. The increase in the phytoplankton diversity and richness were most likely related to the environmental conditions that also started getting more stable.

An important reason for the success of certain algal species in wetland habitats is their ability to tolerate variations in water level and desiccation. Water levels may fluctuate several times in a few months or persist for several years. Algae that are subjected to a variable moisture regime must have the capacity to adapt to tolerate the extremes of these environmental conditions (Wehr and Sheath 2003). Thus, many factors may contribute to phytoplankton diversity and production in wetlands, including nutrients, temperature, light, macrophytes, etc. (Stevenson et al. 1996). As in other water bodies, nutrient conditions, climate, and geology influence species composition but in wetlands, water level, plant composition and degree of mixing with other water bodies are also important for the phytoplankton community (Goldsborough and Robinson 1996).

In the southern Iraqi marshes, the authors observed that diatoms, Chlorophyta and Cyanophyta were the dominant phytoplankton groups, which agrees with the findings of Goldsborough and Robinson (1996).

![Figure 3. Seasonal phytoplankton diversity contour in all sites.](image)
Conclusions and recommendations

The main conclusions from these studies are:

The phytoplankton groups that dominate the southern marshes are diatoms, Chlorophyta and Cyanophyta, with other groups having a low number of species;

In all sites of the southern marshes of Iraq studied, especially in the Central Marsh, Hammar Marsh and Hawizeh Marsh, phytoplankton richness and diversity increased from 2005 to 2007.

Based on these studies, several recommendations relevant to the management of the marshes of southern Iraq are made by the authors:

Phytoplankton should be used for ongoing biological monitoring and as indicators for organic pollution in the marshes;

The controlling factors influencing phytoplankton biomass may vary from season to season and phytoplankton biomass may be more sensitive and responsive to environmental variables in winter and summer as compared to autumn and spring. Monitoring programs should be flexible to allow for adjustment to these changing environmental conditions;

Monitoring studies should focus on the main parameters that have the greatest effects on the phytoplankton community. These are: light penetration, temperature, pH, water flow, nutrient levels and land use, in particular for water buffalo and cattle grazing.

Acknowledgements

Over the 2005 to 2007 period, the surveys under the Nature Iraq Key Biodiversity Areas(KBA) Project involved many individuals. Phytoplankton analysis was conducted by the senior authors: Ghasak S. Al-Obaidi and Suad K. Salman. This paper draws on these authors’ data and unpublished field reports. The authors wish to thank the KBA team for their work in the field, Anna Bachmann, who has been the project manager and report editor, as well as Barham K. Maulood for his comments and advice on this paper. Thanks also are extended to Azzam Alwash, the Director of Nature Iraq, for his support. In southern Iraq, the KBA Project was supported by the Canadian International Development Agency from 2004–2006 and by the Italian Ministry of Environment, Land and Sea from 2006 to present.

References

Appendix 1.

List of phytoplankton species identified during KBA-South Survey 2005–2007

CYANOPHYTA
- *Anabaena* sp.
- *Aphanocapsa* sp.
- *Aphanotoce* sp.
- *Calothrix* sp.
- *Chroococcus dispersus*
- *Chroococcus limneticus*
- *Chroococcus minor*
- *Chroococcus minutus*
- *Chroococcus turgidus*
- *Chroococcus* sp.
- Coccoid algae
- *Gloeocapsa turgidus*
- *Gomphosphaeria aponina*
- *Leptolyngbya perlegans*
- *Lyngbya limnetica*
- *Merismopedia convolute*
- *Merismopedia glauca*
- *Microcystis aeruginosa*
- *Nostoc* sp.
- *Oscillatoria acuminata*
- *Oscillatoria amoena*
- *Oscillatoria amphibium*
- *Oscillatoria angustissimum*
- *Oscillatoria chalybeum*
- *Oscillatoria curviceps*
- *Oscillatoria earlei*
- *Oscillatoria getleri*
- *Oscillatoria limnetica*
- *Oscillatoria limosa*
- *Oscillatoria minima*
- *Oscillatoria subberis*
- *Oscillatoria tenuis*
- *Oscillatoria tenuis var. natans*
- *Oscillatoria* sp.
- *Spirulina laxa*
- *Spirulina major*
- *Tolyphothrix* sp.

EUGLENOPHYTA
- *Euglena acus*
- *Euglena convoluta*
- *Euglena minuta*
- *Euglena* sp.
- *Lepocinclis* sp.
- *Phacus gigas*
- *Phacus longicauda*
- *Phacus orbicularis*
- *Phacus* sp.
- *Trachelomonas* sp.

PYRROPHYTA
- *Dinobryon divergens*
- *Dinobryon sertularia*
- *Glenodinium quadridens*
- *Peridinium cinctum*

CRYPTOPHYTA
- *Chroomonas nordstedtii*
- *Actinastrum hantzschii*
- * Ankistrodesmus falcatus*

CHLOROPHYTA
- *Ankistrodesmus* sp.
- *Botryococcus braunii*
- *Botryococcus protuberans*
- *Botryococcus protuberans var. minor*
- *Botryococcus* sp.
- *Characium* sp.
- *Chlamydomonas* sp.
- *Closterium* sp.
- *Coelastrum astroideum*
- *Coelastrum microporum*
- *Coelastrum reticulatum*
- *Cosmarium formosulum*
- *Cosmarium hammeri*
- *Cosmarium setuiforme*
Cosmarium subcostatum
Cosmarium sp.
Crucigenia tetrapedia
Dictyosphaerium sp.
Kirchneriella irregularis
Micractinium pusillum
Monoraphidium contortum
Monoraphidium convolutum
Monoraphidium sp.
Mougeotia sp.
Oedogonium cardiacum
Oedogonium sp.
Oncystis sp.
Ophiocytium bicuspidatum
Pandorina morum
Pediastrum boryanum
Pediastrum duplex
Pediastrum simplex
Pediastrum simplex var. duodenium
Pediastrum tetras
Pediastrum tetras var. tetraodon
Rhizoclonium sp.
Scenedesmus abundans
Scenedesmus acuminatus
Scenedesmus acuminatus var. tetradesmoides
Scenedesmus acutus
Scenedesmus arcuatus var. platydiscus
Scenedesmus bijuga
Scenedesmus bijuga var. alternans
Scenedesmus dimorphus
Scenedesmus quadricauda
Scenedesmus sp.
Schoederia antillarum
Spirogyra subsalsa
Spirogyra sp.
Stauarastrum natator
Tetraedron caudatum
Tetraedron minimum
Tetraedron regulare
Trewaria setigera
Ulothrix sp.

BACILLARIOPHYTA
a-Centrales
Chaetoceros sp.
Coscinodiscus lacustris
Coscinodiscus sp.
Cyclotella atomus
Cyclotella kuetzingiana
Cyclotella meneghiniana
Cyclotella ocellata
Cyclotella radiosa
Cyclotella stelligera
Cyclotella striata
Stephanodiscus astrea

b- Pennales
Achnanthes affinis
Achnanthes biaisolettiiana
Achnanthes elevi
Achnanthes conspicua
Achnanthes hungarica
Achnanthes lanceolata
Achnanthes microcephala
Achnanthes minutissima
Achnanthes sp.
Amphipora alata
Amphora coffeaeformis
Amphora ovalis
Amphora veneta
Amphora sp.
Aneumastus tusculus
Anomoeoneis exilis
Anomoeoneis sphaerophora
Bacillaria paxillifer (also known as Bacillaria paradoxa)
Brachysira exilis
Caloneis bacillum
Caloneis permagna
Caloneis silicula = Caloneis ventricosa
Campylococcus clypeus
Cocconeis pediculus
Cocconeis placenta
Cocconeis placenta var. euglypta
Cocconeis placenta var. lineata
Cymatopleura solea
Cymbella affinis
Cymbella affinis var. excisa
Cymbella aspera
Cymbella cistula
Cymbella cistula var. maculata
Cymbella cymbiformis
Cymbella differta
Cymbella leptoceros
Cymbella microcephala
Cymbella parva
Cymbella prostrata
Cymbella pusilla
Cymbella sinuate
Cymbella tumida
Cymbella turgida
Cymbella ventricosa
Cymbella sp.
Denticula sp.
Diatoma elongatum
Diatoma elongatum var. tenuis
Diatoma tenuis var. elongatum
Diatoma vulgare
Diploneis elliptica
Diploneis interrupta
Diploneis ovalis
Diploneis pseudoovalis
Diploneis sp.
Epithemia sorex
Epithemia turgida
Epithemia zebra
Epithemia zebra var. porcellus
Epithemia zebra var. saxonica
Eunotia formica
Eunotia pectinalis
Eunotia sp.
Fragilaria acus
Fragilaria acus var. angustissima
Fragilaria brevistriata
Fragilaria capitata
Fragilaria capucina
Fragilaria construens
Fragilaria pulchella
Fragilaria tabulata
Fragilaria ulna
Fragilaria ulna var. biceps
Fragilaria ulna var. oxyrhynechus
Fragilaria vaucheriata
Gomphonema olivacea
Gomphonema acuminatum
Gomphonema angustatum
Gomphonema attenuatum
Gomphonema augar
Gomphonema constrictum var. capitata
Gomphonema gracile
Gomphonema gracile var. turris
Gomphonema intricatum
Gomphonema intricatum var. pumila
Gomphonema olivaceum
Gomphonema parvulum
Gomphonema sphaerophorum
Gomphonema tergestinum
Gomphonema turris
Gyrosigma acuminatum
Gyrosigma attenuatum
Gyrosigma macrum
Gyrosigma poissonis
Gyrosigma scalroide
Gyrosigma spencerii
Gyrosigma spencerii var. nodifera
Gyrosigma tenuirostrum
Gyrosigma sp.
Hantzschia amphioxe
Mastogloia braunii
Mastogloia elliptica
Mastogloia elliptica var. danse
Mastogloia smithii
Mastogloia smithii var. amphicephala
Mastogloia smithii var. lacustris
Navicula anglica
Navicula atomus
Navicula bryophila
Navicula crucicula
Navicula cryptocephala
Navicula cryptocephala var. intermedia
Navicula cryptocephala var. veneta
Navicula cuspidata Nitzschia obtusa
Navicula gracilis Nitzschia palea
Navicula oblonga Nitzschia punctata
Navicula parva Nitzschia punctata var. coarctata
Navicula pseudotuscula Nitzschia romana
Navicula pupula Nitzschia scalaris
Navicula pygmaea Nitzschia sigma
Navicula radiosa Nitzschia sigma var. rigidula
Navicula radiosa var. tenella Nitzschia sigmoidea
Navicula rhynechocephala Nitzschia umbonata
Navicula similis Nitzschia tryblionella
Navicula spicula Nitzschia tryblionella var. levidensis
Navicula sp. Nitzschia tryblionella var. victoriae
Neidium productum Nitzschia umbonata
Nitzschia acicularis Pinnularia sp.
Nitzschia amphibia Plagiotropis lepidoptera
Nitzschia angustata Pleurosigma angulatum
Nitzschia angustata var. acuta Pleurosigma elongatum
Nitzschia apiculata Pleurosigma obscurum
Nitzschia clausii Pleurosigma salinarum
Nitzschia commutata Pleurosigma sp.
Nitzschia cumutata Rhoicosphenia curvata
Nitzschia dissipata Rhopalodia gibba
Nitzschia fasciculata Rhopalodia gibba var. musculus
Nitzschia filiformis Rhopalodia gibba var. ventricosa
Nitzschia fonticola Rhopalodia musculus
Nitzschia frustulum Rhopalodia parallela
Nitzschia frustulum var. perminuta Stauroneis phenicenteron
Nitzschia gracilis Stauroneis sp.
Nitzschia granulata Surirella angustata
Nitzschia hungarica Surirella biseriata
Nitzschia inconspicua Surirella capronii
Nitzschia intermedia Surirella ovalis
Nitzschia longissima Surirella ovata
Nitzschia lorenziana Surirella ovata var. africana
Nitzschia lorenziana var. subtilis Surirella robusta
Nitzschia microcephala Tryblionella debilis